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Abstract Earthquake time series can be characterized by the rate of occurrence,
which gives the number of earthquakes per unit time. Occurrence rates generally
evolve through time; they strongly increase immediately after a large shock, for
example. Understanding and modeling this time evolution is a fundamental issue in
seismology, and more particularly for prediction purposes.

Seismicity rate changes can be subtle, with a slow time evolution, or with a
gradual onset long after the cause. Therefore, it has proved problematic in many
instances to assess whether a change in rate is real, i.e., whether it is statistically
significant, or not. We here review and describe existing methods developed for
measuring seismicity rate changes, and for testing the significance of these changes.
Null hypotheses of ’no change’ are formulated, that depend on the context. Statistics
are then defined to quantify the departure from this null hypothesis. We illustrate
these methods with several examples.

1 Why compute seismicity rate changes?

Earthquakes, especially of small to moderate sizes, are generally abundant in active
fault zones. Although they do not matter in terms of seismic hazard, their occur-
rences are a signature of the state of the crust at seismogenic depths, that cannot
otherwise be probed or subject to direct measurements. As such, they provide an
unique source of information regarding to the mechanical state of potentially dan-
gerous seismic asperities.

Changes in seismicity patterns are therefore likely to be correlated to changes in
stress, as evidenced by aftershock sequences, or by more subtle seismicity dynamics
caused by nucleation processes of large earthquakes. A key issue is then to quantify
changes in the rate of earthquake occurrences, in particular by checking whether
such changes are actually statistically significant or not. In many applications the
change in rate is obvious, and does not really require any specific analysis; this is
clearly the case when considering the whole rupture area of a given mainshock, for
which the increase in rate is always extremely significant. However, more demanding
analyses are needed when inspecting areas that only experience a weak or mild
aftershock triggering, as is the case far off the main fault, or for small areas close
to the fault that are thought of as undergoing stress unloading (eg, stress shadows).
Quantitative measures of a change in seismicity are more particularly required when
trying to detect specific patterns (eg, relative quiescence) prior to large shocks, as
an attempt to identify precursory phenomena that could be used for earthquake
prediction strategies.

http://www.corssa.org/glossary/#seismicity_rate
http://www.corssa.org/glossary/#stress
http://www.corssa.org/glossary/#aftershock
http://www.corssa.org/glossary/#mainshock
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2 Prerequisite

The reader should be familiar with Poisson processes (Theme III) and seismicity
models (Theme V), at least for the nonstationary treatment of section 5, before
reading this article.

We will assume throughout this chapter that the earthquake data have been
quality-controlled, in particular that a magnitude of completeness mc has been es-
timated, that only earthquakes with magnitudes greater than this mc are kept, and
that the magnitudes are all computed in a consistent way. We refer the reader to
Habermann (1987) for a review on how spurious seismicity rate changes can arise
from artificial effects. Such effects can be detected by considering separate rate
changes for various magnitude bands. We will here only investigate rate changes for
the whole magnitude interval m ≥ mc.

3 An introductory case study

We start by studying the changes in earthquake activity remotely caused by the
Landers earthquake, as reported in Hill et al. (1993). The number of earthquakes
that occurred at several remarkable locations, in the seven days prior to and in the
seven days following Landers, are summarized in Table 1 (this is only an excerpt of
Table 1 of Hill et al. (1993)):

Region Nb Na

Death Valley 6 11

White Mountains 0 27

Parkfield 8 11

Mono Basin 3 12

Geysers 70 60

Table 1 Number of earthquakes seven days before (Nb) and after (Na) the Landers earthquake, in 5 selected

regions. Taken from Hill et al. (1993).

It is clear from these numbers that the White Mountains region experienced a
significant increase of activity after Landers. The four other regions were however
not so much influenced by it. We now define a measure that can tell us how much
confident we can be in arguing a change has occurred. We will develop our calcu-
lations with the Death Valley region, and eventually will give the results for all 5
regions.

To begin with, it is important to emphasize that a change in number from Nb = 6
to Na = 11 does not necessarily imply that the underlying seismicity rate indeed
increased. These numbers are outcomes of a Poisson process, very much like the
number of clients entering the local bakery during a 5 minute interval. We could

www.corssa.org
http://www.corssa.org/glossary/#Poisson_distribution
http://www.corssa.org/articles/themeiii
http://www.corssa.org/articles/themev
http://www.corssa.org/glossary/#completeness (magnitude of completeness, completeness magnitude)
http://www.corssa.org/glossary/#magnitude
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Fig. 1 Probability density function of the earthquake rate (in 1/day) observed at Death Valley, 7 days before and

7 days after the 1992 Landers earthquake

very well observe that 6 clients came between 11:20 and 11:25, while 11 came between
11:25 and 11:30, without necessarily conclude that the second interval is on ensemble
average nearly twice as busy as the first. Actually, the chance is that the two intervals
are in general equivalent, but today, by pure luck, it happened that Nb = 6 and
Na = 11. A null hypothesis could be formulated: the numbers Na and Nb are drawn
from two independent, identically distributed Poisson laws, i.e., the two intervals are
equally busy, and the rate of clients per minute is 6+11

10
= 1.7. Then the chance of

observing Nb = 6 and Na = 11 is P (Nb = 6, Na = 11) = e−17 × 8.56

6!
× 8.511

11!
= 0.91%.

This combination of outcomes will therefore occur 0.43 times per day on average,
counting 8 business hours per day, so that our observing it is quite plausible.

We further develop this argument. For any given region, we denote by λb and
λa the earthquake rates before and after Landers. As explained in the previous
paragraph, these rates are unknown: for example, one could intuitively argue that
the 6 earthquakes observed at Death Valley in the week prior to Landers could
reasonably be due to a daily rate λb in the [1

7
, 3] day−1 range, at the time scale of 1

week. Indeed, the probability to have 6 occurrences in 7 days if λb = 1
7

day−1 amounts

to P (Nb = 6|λb = 1
7
) = e−1 16

6!
= 5.1 × 10−4; equivalently, P (Nb = 6|λb = 3) =

e−21 216

6!
= 9×10−5, while it becomes at max P (Nb = 6|λb = 6

7
) = e−6 66

6!
= 0.161. The

probability density function associated with the rate λ for N earthquakes occurring
in a time interval ∆t is

f(λ) = ∆t e−λ∆t
(λ∆t)N

N !
(1)

http://www.corssa.org/glossary/#mean_(average)
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We show in Figure 1 the two pdf (before and after Landers) for Death Valley.
The maximum likelihood is given by λ = N

∆t
. Using these pdf, we can compute the

probability that the earthquake rate increased by more than a given ratio r, i.e.,

P

(
λa
λb

> r

)
=

∞∫
0

dλb fb(λb)

∞∫
rλb

dλa fa(λa) (2)

This yields

P

(
λa
λb

> r

)
= 1 − 1

Na! Nb!

∞∫
0

dx e−x xNb Γ (Na + 1, rx) (3)

where Γ (n, x) =
x∫
0
dt e−t tn−1 is the incomplete Gamma function. This can be

further generalized to the case where the two time intervals ’before’ and ’after’ do
not have the same durations: the last term of Equation 3 must then be changed to

Γ
(
Na + 1, rx∆ta

∆tb

)
.

This expression can only be solved numerically. A Matlab program that does this
is given by:

function P=probability_increase(r,Nb,Na,Dtb,Dta)

% estimate the probability that the rate of earthquakes

% ’after’ is at least r times greater than the rate of

% earthquakes ’before’. Nb earthquakes are observed in a time

% duration Dtb before, and Na in Dta after.

if(Nb<25) Nm=max([10 10*Nb]); x=0:Nm*10^(-3):Nm;

else x=Nb-5*sqrt(Nb):sqrt(Nb)*10^(-2):Nb+5*sqrt(Nb); end

tmp=Nb*log(x); if(Nb==0 & x(1)==0) tmp(1)=0; end

tmp=tmp-x-gammaln(Nb+1)+log(gammainc(r*Dta/Dtb*x,Na+1))+log((x(2)-x(1)));

P=1-sum(exp(tmp));

Applying this to the Death Valley case, we find that the probability for an increase

of seismicity (r = 1) is P
(
λa
λb
> 1

)
= 0.881. The probability for a two-fold increase

(r = 2) is P
(
λa
λb
> 2

)
= 0.391. The decay of this probability with r is shown in

Figure 2.
From these curves, it is easy to determine the 90% confidence interval for r, that

is, the interval r1 < r < r2 so that P (r1) = 5% and P (r2) = 95%. We here find
0.80 < r < 4.02. Similarly, the 99% confidence interval is 0.52 < r < 6.79. In both
cases, r values less than 1 are a possibility, as could have been guessed by direct

www.corssa.org
http://www.corssa.org/glossary/#maximum_likelihood
http://www.corssa.org/glossary/#confidence_interval
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Fig. 2 Probability of a change in seismicity rate greater than ratio r, for the Death Valley region, in linear and
log-log scales.

inspection of Figure 2. We therefore cannot be confident that the Death Valley region
really experienced an increase in seismicity rate after the Landers earthquake, at
least at the time scale of one week.

Equivalently, it is interesting to compute the number of earthquakes that should

have occurred in the week following Landers and that would have resulted in P
(
λa
λb
> 1

)
being greater than a threshold value p. For p = 0.90, we would have needed at least
12 earthquakes (only one more than the 11 actually observed), while for p = 0.99
this number goes up to 18.

We summarize in Table 2 the results for the five regions. Only the White Moun-
tains and the Mono Basin regions can be considered with good confidence (greater
than 98% in both cases) as having undergone an increase in seismicity rate.

region r = 1 r = 2 r = 5

Death Valley 0.88 0.39 0.02

White Mountains 1.00 1.00 0.93

Parkfield 0.75 0.19 0.0028

Mono Basin 0.989 0.83 0.27

Geysers 0.19 7× 10−7 2× 10−10

Table 2 Probability P
(
λa
λb

> r
)

for three values of r, for the 5 regions as in Table 1.
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4 Measuring the significance of a seismicity rate change

We now introduce several statistics that have been or could be proposed to measure
the significance of seismicity rate changes. We keep the same notations as above:
before time T of interest (eg, time of occurrence of the Landers mainshock), Nb

earthquakes were observed to occur in a time interval of duration ∆tb, while after
T , we observe Na earthquakes in a time ∆ta. The question is still the same: how
significant is the rate change that occurred at T , if any? The corresponding null
hypothesis is that there was no change, i.e., before and after are characterized by
the same Poisson process with the same mean rate λ.

4.1 Statistics P and γ (Marsan and Nalbant 2005)

The probability P = P
(
λa
λb
> 1

)
that λa > λb, is a good and simple measure of how

the two processes characterizing before and after differ of each other. We first discuss
the case when ∆ta = ∆tb, for simplicity. It is easy to show in this case that P = 0.5
when Na = Nb: there is as much chance that activation (r > 1) or inhibition (r < 1)
took place if we observe the same numbers of earthquakes before and after T . This
value P = 0.5 corresponds to the maximum overlap between the two pdf of λa and
λb. Departure from λa = λb will therefore result in P departing from 0.5, and going
towards either 0 if there is a shutdown of activity, or 1 if there is activation.

Remarkably, in the null hypothesis λa = λb, the statistic P follows a uniform
random law between 0 and 1, as shown in Figure 3. Therefore, one can easily test
whether the computed value P for the specific case under investigation can be
explained by the null hypothesis of ’no change’ or not. For example, if we obtain
P = 0.994, then the probability that this value or a greater one could be obtained
by chance if there was no change (null hypothesis) is 1− 0.994 = 0.6%.

Marsan and Nalbant (2005) thus proposed to define the statistic γ as the log (in
base 10) of the departure of P from 0.5:

γ = log10P (4)

if P < 0.5, hence a decrease of activity, or

γ = − log10(1− P) (5)

if P > 0.5, hence an increase of activity. For example, if P = 10−3, then there
is only a 10−3 chance that this apparent decrease or an even stronger one could be
due to pure luck (null hypothesis of no change), and thus γ = −3. On the contrary,
if P = 0.999 = 1 − 10−3, then the chance of observing this value or a greater one
by chance is 10−3 also, and γ = +3. The statistic γ therefore provides an easy way

www.corssa.org
http://www.corssa.org/glossary/#mean_(average)
http://www.corssa.org/glossary/#random
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Fig. 3 Distribution of the probability P of an increase in seismicity rate, in the hypothesis of no change in rate.

The two intervals before and after are characterized by the same rate λ, which takes three values as indicated on
the graph. A unit time interval is considered for the two periods (∆ta = ∆tb = 1). The distribution was obtained

by running 104 independent simulations.

of telling whether we are close or far from respecting the no-change null hypothesis,
and moreover gives the sign of the change. The value of γ can easily be interpreted
in terms of a confidence level. For example, a confidence level of 95% corresponds
to P < 0.025 or P > 0.975, hence a threshold value of |γ| = 1.6. Similarly, this
threshold becomes |γ| = 2.3 for a confidence level of 99%.

This statistic is easy to implement:
(1) run P=probability_increase(1,Nb,Na,Dtb,Dta); cf above;
(2) compute γ as gamma=-sign(P-0.5)*log(min([P 1-P]))/log(10);

When ∆ta and ∆tb are different, the probability P departs from the uniform law
for the null hypothesis of no change, as shown in Figure 4. However, this departure
remains limited, the more so as the two durations are not too different, so that
the statistic γ can still be used to a good approximation. Alternatively, γ can be
computed by changing P into −0.22P2 + 1.22P if ∆ta

∆tb
� 1, or into 0.22P2 + 0.78P

if ∆ta
∆tb
� 1, cf. Figure 4.

As an example, if we consider the case of the Death Valley region, then P = 0.88,
cf. Table 2, and thus γ = +0.92, hence an increase which is not significant. On the
contrary, for the Mono Basin region, P = 0.989, thus γ = +1.96, which can be
accepted as a significant rate change.
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Fig. 4 Same as in Figure 3, but with ∆tb = 1 and a varying ∆ta as indicated on the graph. For ∆ta 6= ∆tb, the

probability P slightly departs from a uniform law: a good fit of the cumulative probability is given by Pr(P < x) =
−0.22x2 + 1.22x, for both ∆ta = 10 and ∆ta = 100.

4.2 Statistic β of Matthews and Reasenberg (1988)

Instead of considering the full probability densities as for example shown in Figure 1,
one can compute the difference between the observed number Na and the expected
number Nb × ∆ta

∆tb
, and rescale it by the typical dispersion (i.e., standard deviation)√

Nb × ∆ta
∆tb

. This gives the statistic

β =
Na − Λ√

Λ
(6)

with Λ = Nb ×
∆ta
∆tb

(7)

Note that a symmetric measure could be proposed as Λ−Nb√
Λ

and Λ = Na × ∆tb
∆ta

,

which is equal to β when ∆ta = ∆tb. For the Death Valley region, we obtain β =
+2.04, while for the Mono Basin region β = +5.19. As can be seen with this example,
large β values, sometimes greater (in absolute value) than 5, are needed to make
sure the rate change is effectively significant. Such a large critical value is necessary
here because the numbers Nb are small.

The translation of β into a probability can be done in the limit of large numbers
of earthquake occurrences, for which the Poisson distribution tends to a Gaussian
law. In the null hypothesis of no change, β is distributed like a Gaussian with zero

www.corssa.org
http://www.corssa.org/glossary/#standard_deviation
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mean and unit standard deviation. Thus, for a positive β, the probability to obtain
a greater value is 1

2
− 1

2
erf(β/

√
2) where erf is the error function, while for a negative

β the probability to obtain a smaller value is 1
2

+ 1
2
erf(β/

√
2).

It can be argued that, while being very simple to compute, the β-statistic is
perhaps not the best choice: a symmetric version (as is the case of Z, cf. below) would
be more appropriate, and the significance level of the rate change is not directly
given by the value of β. Moreover, the underlying assumption of large numbers of
earthquakes limits its use.

4.3 Statistic Z of Habermann (1981)

A measure was proposed by Habermann (1981) as

Z =
Na ∆tb − Nb ∆ta√
Na ∆t2b + Nb ∆t2a

(8)

This is very similar to the β statistic, or, more exactly, is a symmetrical version
of it, i.e., the denominator depending equally on both time intervals. As with the β
statistic, in the limit of large numbers Na and Nb, Z is distributed like a Gaussian
law with zero mean and unit standard deviation, in the null hypothesis of no change.
A derivation of this result can be found in Marsan and Nalbant (2005). Note that
the original Z statistic as proposed by Habermann (1983) has the sign reversed from
the one defined in Equation 8. We changed this sign to be coherent with the other
statistical measures.

We compute Z for the Death Valley region: Z = +1.21, and for the Mono Basin
region: Z = +2.32. The change can be considered as significant if |Z| > 2.

5 Accounting for nonstationary trends in earthquake activity

So far we have compared the observed Na earthquakes after the time of interest
T to the Nb occurrences before. The rationale of this comparison is that, if there
were indeed no change, then we would expect Na to be a random draw of the same
Poisson process that generated Nb. However, this expectation must be reexamined if
we know the earthquake activity is following a nonstationary trend at time T . The
case of mainshock doublets or even multiplets is here particularly important: if we
want to map the changes in seismicity (and thus of stress) brought by the second
mainshock M2, we first need to understand how the seismicity was evolving prior to
it. Since the first mainshock M1 initiated an aftershock sequence, this activity was
likely to be decaying at the time of M2. A model is therefore required to ’propagate’
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the ’normal’ aftershock activity of M1 past the occurrence of M2, so to compare
between the observed earthquake rate and this predicted rate.

There are typically two ways to address the issue of nonstationarity. The more
traditional method is to first decluster the dataset, which in principle should result
in a stationary dataset for which the quantities described in Section 4 can then be
applied. However, removing aftershocks from the earthquake catalog is in most cases
not desirable. For example, testing whether a change in Coulomb stress caused by
a mainshock implied a change in seismicity rate obviously requires to consider the
aftershocks of this mainshock.

The other solution is to model the earthquake-generating process and its time
evolution, knowing the history of the process up to time T , and then use this model
to guess how λa should be distributed if there were no other change (apart from
the ’normal’ trend) at time T . This approach was developed in Marsan (2003). The
main issue is to propose a good model that can well explain the evolution of the
time series up to time T , and to extrapolate this time series between T and T + ta.

As an example, Figure 5 extracted from Daniel et al. (2008) shows the case of
the June 2000, Iceland, doublet, in which two very similar Ms6.6 vertical, strike-slip
earthquakes occurred within 3.5 days and ∼15 km of each other. In this Figure, the
seismicity rate at the Hengill triple junction (about 30 to 50 km away from the two
earthquakes) is shown, after correction for completeness issues (white bars). Time
0 is 00:00, 17th of June, hence only a few hours before the occurrence of the first
mainshock. This mainshock initiated an aftershock sequence in this zone, although
we are far from the rupture zone itself. This sequence is modeled with an Omori-
Utsu law; the fit is done from the time of the first mainshock to the time T of the
second, and then extrapolated to t > T . A clear departure in seismicity rate from
this trend just after the 2nd mainshock is observed, lasting for about 5 hours only.
This increase in rate from the expected rate can then be tested using the various
statistic described in Section 4.

The method for estimating rate changes in the context of nonstationary trends
is then:

1. knowing earthquake activity up to time T , fit a model λ̂(t) to the seismicity rate;

2. extrapolate λ̂(t) to the time interval of duration ∆ta of interest;
3. deduce from this extrapolation a pdf f(λ) for the expected λ for this interval.

The simplest pdf is a Dirac f(λ) = δ(λ − λ̂) with its atom on the extrapolated
value, but accounting for estimate uncertainties during the parameterization of
the model λ̂(t), or even for the simple fact that in general the rate extrapolated
over the whole interval ∆ta is not constant, would result in a more complex pdf;

4. use the statistic P and associated γ, with f(λ) replacing fb(λb):

www.corssa.org
http://www.corssa.org/glossary/#decluster
http://www.corssa.org/glossary/#earthquake_catalog
http://www.corssa.org/glossary/#Coulomb_stress
http://www.corssa.org/glossary/#Omori-Utsu_relation
http://www.corssa.org/glossary/#Omori-Utsu_relation
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Fig. 5 Black bars: seismicity rates observed at Hengill Triple Junction frm 00:00 on June 17, 2000. The occurrence
times of the two Ms6.6 mainshocks are indicated by the first bar and by the vertical dotted line, respectively.

White bars: same as with the black bars, but after correcting for completeness issues. The rate is then for m ≥ 0

earthquakes. Gray curve: best Omori-Utsu law fitted using the time interval between the two mainshock, that
models the aftershock sequence in this zone caused by the first mainshock. It is further extrapolated after the

second mainshock. Extracted from Daniel et al. (2008).

P = 1 − 1

Na!

∞∫
0

dx f
(
x

∆ta

)
Γ (Na + 1, x) (9)

6 Searching for a significant change in the earthquake-generating process

In many applications, the rate change is estimated at a particular time T of interest,
typically the occurrence of a mainshock. However, one can also be interested in
checking whether there exists a significant change within a given interval, without a
priori knowing the exact time T at which this change occurs. Then T is considered as
an unknown parameter in this problem. Sophisticated methods have been proposed
to address this problem (Ogata 1988, 1989, 1992, 1999, 2001), with a particular
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emphasis on searching for anomalous seismicity rate decreases precursory to large
shocks.

With this approach, one is interested in detecting the time at which the earthquake-
generating process is significantly modified. To summarize, a model of seismicity is
fitted to the data up to time T , and then extrapolated to later times t > T . Depar-
ture of the data at t > T from this extrapolation is then sought for. An optimization
is performed to maximize this departure, by changing the change-point T . Finally,
for the optimized T , the significance of the departure between the data and the
extrapolation is computed.

To illustrate this, and further detail the method, we discuss the case of the
seismicity in the Aleutian arc from 1965 to 1989, taken from Ogata (1992), cf.
Figure 6. In this analysis, a temporal ETAS model was fit to the data, separately
for two distinct time intervals. The second time interval extends from some time
in the year 1965 to 1975 (vertical dashed line in Figure 6). This model gives the

expected earthquake rate λ̂(t) at any time t. Integrating this rate over time since a

starting time T gives Λ̂(T, t) =
t∫
T
ds λ̂(s), the expected number of earthquakes that

should have occurred, according to the model, between T and t.
If the model is good, then the actual number of earthquakes N(T, t) between

T and t should result from a Poisson process with mean rate 1 when considering
the transformed time τ = Λ̂(T, t) instead of the real time t. A plot of N(T, t) vs.
τ should thus show a curve close to a straight line of slope 1. Departure of N(T, t)
from this line therefore indicates that the model does not correctly explain the data.
A measure can be proposed to test how significant this departure is (Ogata 1992):

ξ =
N(T, t)− Λ̂(T, t)√
Λ̂(T, t) + Λ̂(T, t)2/N0

(10)

where N0 is the number of earthquakes that occurred in the fitting interval. The
term related to N0 in the denominator of Equation 10 is effectively a correction term
that accounts for parameter uncertainties when fitting the model; such uncertainties
are reduced when N0 increases. Apart from this correction, ξ is very similar to the
β statistic. Moreover, ξ is distributed like a Gaussian law with zero mean and unit
standard deviation when the model well approximates the data. Optimization then
amounts to find the best date for the changing-point T , so that the departure is the
most significant.

A simpler approach to finding the best change-point date T is proposed in Wyss
and Habermann (1988). It consists in computing the Z statistic for a varying time T ,
considering as before the earthquakes occurring between an initial time t0 and T , and
as after the earthquakes between T and an ending time t1. The latter is typically the

www.corssa.org
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Fig. 6 Cumulative number of mb ≥ 5.1 earthquakes in the Aleutian arc (40o < latitude < 80o and 170oE <

longitude < 160oW) from 1965 to 1989, vs. time (left) and vs. transformed time (right). The seismicity is modeled

using a temporal ETAS model, with two set of parameters fitted over two distinct time intervals as shown with the
vertical dashed lines (the first interval is all contained in 1965, year of the Mw8.7 great Rat Island earthquake). The

model is then extrapolated past the second dashed line (year 1975) for constructing the transformed-time graph.

On this graph, departure of the data from the central dotted curve past the lower-most dotted curve indicates
a significant shutdown of activity, compared to what would have been predicted had the earthquake-generating

process remained statistically the same after 1975. This relative quiescence lasts several year, up to the time of the

1986 Ms7.7 Andoreanof Islands earthquake (shown by the upward pointing arrow). Taken from Ogata (1992).

date of a large shock of interest, when searching for precursory quiescence patterns.
The most significant Z is then selected. This first requires to decluster the data, as
already mentioned when introducing the Z statistic.
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