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1 Motivation

Assessing the magnitude of completeness Mc of instrumental earthquake catalogs
is an essential and compulsory step for any seismicity analysis. Mc is defined as
the lowest magnitude at which 100% of the earthquakes in a space-time volume
are detected. A correct estimate of Mc is crucial since a value too high leads to
under-sampling, by discarding usable data, while a value too low leads to erroneous
seismicity parameter values and thus to a biased analysis, by using incomplete data.
In this article, we describe peer-reviewed techniques to estimate and map Mc. We
provide examples with real and synthetic earthquake catalogs to illustrate features
of the various methods and give the pros and cons of each method. With this article
at hand, the reader will get an overview of approaches to assess Mc, understand why
Mc evaluation is essential and an a non-trivial task, and hopefully be able to select
the most appropriate Mc method to include in his seismicity studies.

2 Prerequisites

In order to test the procedures presented in this article, the reader shall have access
to an earthquake catalog. A number of earthquake catalogs are freely accessible from
the webpages of the seismic networks or their associated data centers. Examples
include global datasets from the Advanced National Seismic System (ANSS) and
regional datasets from the Southern California Earthquake Data Center (SCEDC)
or the Italian Seismic Bulletin. The data sets used in this tutorial are from Woessner
and Wiemer (2005).
The reader should already be familiar with statistical concepts and tools presented
in Theme III - Statistical Foundations (Naylor et al. 2010), as well as with the
basic features of seismicity catalogs as presented in other articles of Theme IV -
Understanding Seismicity Catalogs and their Problems (Husen and Hardebeck 2010;
Woessner et al. 2010). We assume that the catalogs only include tectonic events and
that man-made contaminations have already been removed. This can often already
be selected when downloading a catalog.

3 Expected Achievements

After completing this tutorial, the reader should be able to perform various com-
pleteness magnitude analyses and identify the advantages and pitfalls of different
techniques. By understanding the importance of a correct estimate of Mc prior to
any seismicity analysis, the reader will have the tools to verify his scientific hypothe-
ses based on a robust dataset.
In the appendix we provide simple functions to compute Mc in the R Language,

http://www.corssa.org/glossary/#completeness__magnitude_of_completeness__completeness_magnitude
http://www.corssa.org/glossary/#synthetic_earthquake_catalog
http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
http://www.data.scec.org/
http://bollettinosismico.rm.ingv.it/
http://www.corssa.org/articles/themeiii/
http://www.corssa.org/articles/themeiv/
http://www.corssa.org/articles/themeiv/
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which is freely available on all platforms. We also provide a small set of functions
to calculate Mc in MATLAB requiring the Matlab Statistic Toolbox. The function
set is included in the software that accompanies this article.

4 Theoretical Background

Earthquake catalogs are one of the most important products that seismic networks
provide to the scientific community and society. An earthquake catalog is an in-
ferred product that is by no means an easy-to-calibrate entity as a long processing
chain from the detection of the first seismic waves to the determination of the lo-
cation and magnitude of an event has to be passed, including subjective a priori
and post-processing decisions. The detection capability of a network depends on
the density and distribution of seismic stations, their site conditions, their recording
characteristics, and their data link to the processing center. Assessing and quantify-
ing this capability is a complicated task, as almost none of the effects of the links in
the recording chain can be quantified without making assumptions. The earthquake
catalog carries all uncertainties that are intrinsic in the assumptions, making the
evaluation of the catalog completeness challenging.
The completeness magnitude Mc is theoretically defined as the lowest magnitude
at which 100% of the earthquakes in a space-time volume are detected (Rydelek
and Sacks 1989). In practice, a relatively high magnitude threshold may provide
a conservative estimate of Mc but would deprive the dataset of potentially valu-
able information. One may consider that less than 100% of detectability is enough
to define Mc. The most important aspect to consider is that deviation from the
theoretical definition of Mc should not influence the feasibility nor reliability of sub-
sequent seismicity analyses.
Why are not all earthquakes detected in the first place? Reasons are multifold: (1)
the event is too small and its signal undistinguishable from the background noise
on the seismograph, (2) the event is too small to be recorded on a sufficiently large
number of stations - a minimum number of stations must be triggered to initiate the
location procedure and thus the report of the event, (3) network operators decided
that events below a certain threshold are not of interest, or (4) in case of an after-
shock sequence, some events are too small to be detected within the coda of larger
events (i.e. increased noise). To learn more about seismicity catalog generation, the
reader should refer to the CORSSA article by Husen and Hardebeck (2010).
There are two distinguished classes of methods to evaluate Mc: (1) catalog-based
methods (e.g., Rydelek and Sacks 1989; Woessner and Wiemer 2005; Amorèse
2007) (Section 5.1) and (2) network-based methods (e.g., Kvaerna and Ringdal
1999; Schorlemmer and Woessner 2008; D’Alessandro et al. 2011) (Section 5.2).
Although both classes are presented below, this tutorial focuses on the former one

www.corssa.org
http://www.corssa.org/glossary/#aftershock
http://www.corssa.org/glossary/#aftershock


Completeness Magnitude 5

(Sections 6 and 7), in which Mc computation is straightforward and based on readily
accessible parametric catalog data. Network-based techniques are generally time-
consuming to be practical for most seismicity analyses. Moreover, we only consider
completeness issues in instrumental catalogs, which in general start in the mid 1970s.
For completeness analysis of historical or paleoseismic data, which is key to prob-
abilistic seismic hazard assessment, the reader should refer to e.g. Albarello et al.
(2001), Stucchi et al. (2004) and references therein.

5 Methodologies: An Overview

5.1 Catalog-based Methods

Mc is often estimated by fitting a Gutenberg-Richter (G-R) model to the observed
frequency-magnitude distribution (FMD). The magnitude at which the lower end
of the FMD departs from the G-R law is taken as an estimate of Mc (Zuniga and
Wyss 1995). It can be written as follows:

log10N = a− b(m−Mc) (1)

where N is the number of events with magnitude at least m, a is the earthquake
productivity and b describes the relative distribution of small and large earthquakes
(Gutenberg and Richter 1944; Ishimoto and Iida 1939). Events of magnitudem < Mc

are discarded.
Figure 1 shows the FMD of a subset of the North California Seismic Network
(NCSN) catalog and of a subset of the earthquake catalog maintained by the Na-
tional Research Institute for Earth Science and Disaster Prevention (NIED); data
sets are from Woessner and Wiemer (2005) who reviewed catalog-based methods to
evaluateMc. As discussed in Theme III - Statistical Foundations (Naylor et al. 2010),
cumulative data should be treated with care. Each value in a cumulative quantity
depends on all the preceding values. For this reason, we plotted the non-cumulative
FMD in addition to the standard (cumulative) FMD. If we assume self-similarity
(i.e. the G-R law), Mc is simply the magnitude increment at which the FMD departs
from the linear trend in the log-lin plot. In the NCSN example, even a visual eval-
uation can lead to a correct estimate of the completeness magnitude (Mc ∼ 1.2).
In contrast, the NIED example has a less pronounced departure from the linear
trend which makes a visual estimate of Mc more difficult. It should be emphasized
that we only consider deviations from linearity at small m (lower end of the FMD);
deviations at large m (upper end of the FMD) can be due to statistical fluctuations
due to under-sampling or to a real break in the G-R scaling (e.g., Naylor et al. 2010;
Wesnousky 1994).
A number of technical papers provide tools to compute Mc, based on the validity

http://www.corssa.org/glossary/#instrumental_catalog
http://www.corssa.org/glossary/#Gutenberg-Richter_relation
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Fig. 1 FMD of the subset of the NCSN and NIED catalogs. If we assume self-similarity (i.e. the G-R law), Mc is

simply the magnitude increment at which the lower end of the FMD departs from the linear trend in the log-lin plot.
In the NCSN example, a visual evaluation can lead to a correct estimate of the completeness magnitude (Mc ∼ 1.2).
This is however less trivial in the NIED example where the departure from the linear trend is less pronounced.

of the G-R law at small m (Wyss et al. 1999; Wiemer and Wyss 2000; Cao and
Gao 2002; Woessner and Wiemer 2005; Amorèse 2007). Many variants have been
developed in the scope of specific seismicity analyses (e.g., Kagan 2003; Marsan
2003; Helmstetter et al. 2007). Common techniques are described in Section 6.
Noteworthy, the gradual curvature observed in some FMDs is commonly due to
spatiotemporal heterogeneities in Mc (Wiemer and Wyss 2000; Mignan et al. 2011).
These heterogeneities are due to the seismic network spatial configuration and its
evolution through time (Habermann 1987; Wiemer and Wyss 2000; Mignan et al.

www.corssa.org
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2011) and potentially to man-made effects such as the introduction of different mag-
nitude scaling relationships (Habermann 1987; Zuniga and Wyss 1995; Tormann
et al. 2010). Methods to evaluate Mc(x, y, z, t) are described in Section 7. Devia-
tions from the G-R law could also be due to physical processes in the earth (e.g.,
Rydelek and Sacks 1989). For instance, the subset of the NIED catalog (Fig. 1)
corresponds to a volcanic area, which might explain why the FMD does not strictly
follow the G-R law. However any claim of a real deviation from self-similarity at low
m based on bulk data is highly questionable as the most likely reason for a deviation
from the G-R law is a spatiotemporal variation in Mc (Wiemer and Wyss 2000).
An Mc test based on day-to-night noise modulation has been proposed by Rydelek
and Sacks (1989), an assumption that does not assume the self-similarity of seismic-
ity. In this approach, the authors consider that the daytime noise level at a seismic
station is increased relative to night-time due to human activity (see Section 6.6 for
a detailed description of this technique). Contrary to other catalog-based methods
in which Mc is inferred from the expected behavior of seismicity, the method by Ry-
delek and Sacks (1989) relates more closely to detectability issues of seismic stations.
Methods directly based on seismic network information are described in Section 5.2.

5.1.1 Why is a correct estimate of Mc important?

The choice of the minimum magnitude cutoff Mco has a direct impact on the evalu-
ation of the b−value of the G-R law (Eq. 1), which in turn influences the evaluation
of the a−value (i.e. overall seismicity rate). The G-R parameters are in general
the basis of seismic hazard studies (e.g., Cornell 1968; Wiemer et al. 2009) and
of earthquake forecast models (e.g., Wiemer and Schorlemmer 2007). Moreover a
correct estimate of a and b is crucial to better understand the physics of the earth’s
crust (e.g., Mignan 2011). Figure 2 illustrates how the b−value estimate depends
on the choice of the magnitude cutoff Mco. The b−value is computed by using the
maximum likelihood technique:

b =
log10(e)

〈M〉 − (Mc − ∆M
2

)
(2)

where 〈M〉 is the mean magnitude of the sample (with m ≥ Mc) and ∆M is the
binning width of the catalog (Aki 1965). For more details, we refer the reader to the
CORSSA article by Naylor et al. (2010). For Mco < Mc, the b−value is erroneous
because the FMD is not a strict power-law (compare Figs. 1 and 2). For Mco ≥Mc,
the b−value estimate stabilizes (around 1.0 in the NCSN and NIED data sets) before
fluctuating again due to under-sampling at the higher end of the FMD. Looking at
fluctuations in b is one possible approach to determine Mc, as proposed by Wiemer

http://www.corssa.org/glossary/#seismicity_rate
http://www.corssa.org/glossary/#maximum_likelihood
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Fig. 2 b−value estimate as a function of magnitude cutoff Mco for the subset of the NCSN and NIED catalogs.

For Mco < Mc, the b−value is erroneous because the FMD is not a strict power-law. For Mco ≥ Mc, the b−value
estimate starts to stabilize (around 1.0 in the 2 examples) before fluctuating again due to under-sampling at the
higher end of the FMD. Error bars represent ±1σ, standard deviation obtained from bootstrapping (Efron 1979).

and Wyss (2000) or Cao and Gao (2002) (see Section 6). Note that seismic networks
in general improve with time (e.g., Hutton et al. 2010) and more smaller events are
detected, leading to an apparent increase in a−value if the change in Mc is not
considered.

www.corssa.org
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5.1.2 Should we dismiss information below Mc or is this incomplete information of
any value?

While some models have been proposed to define the detection rate of events (e.g.,
Ogata and Katsura 1993) (see Section 6), standard statistical methods may re-
sult in doubtful interpretations because events below the Mc threshold experience
many unreported significant changes and variations (Kagan 2002), in particular due
to subjective decisions in the event processing chain. Thus disregarding data be-
low completeness is good practice when drawing conclusions about the dynamics
seismicity. However, for some techniques the information is necessary (Ogata and
Katsura 1993; Woessner and Wiemer 2005) in the modeling process and to model
the entire frequency-magnitude distribution.

5.2 Network-based Methods - Using Phase-Pick or Waveform Data

Completeness can also be assessed from a network detection perspective; in this
view, the primary focus is not to define the completeness level of the data set -
the target is rather to define the probability level with which an earthquake can be
detected given the station (sensor) sensitivity and station distribution. The result is
then not anymore a function of the earthquake sample but a function of the seismic
network properties. The approaches can again be separated in the type of data and
methodology used:

1. Waveform based techniques have been developed taking advantage of the signal-
to-noise ratio measured at each network station. These types of approaches have
been developed mainly in the framework of monitoring the global nuclear test
ban treaty. The literature relating to these methods is too vast to provide a com-
plete review (e.g., Ringdal 1975, 1986; von Seggern and Blandford 1976; Ringdal
and Kvaerna 1989; Sereno and Bratt 1989; Gomberg 1991; Kvaerna and Ring-
dal 1999; Kvaerna et al. 2002a,2002b; von Seggern 2004). Moreover, in most of
these studies, the completeness magnitude is not the main focus or not explicitly
considered. Thus we will not describe this further.

2. One method uses a waveform forward simulation technique (D’Alessandro et al.
2011) that can also be used to estimate completeness though it is primary de-
signed to assess hypocenter location accuracy. We do not describe this method.

3. Using phase-pick data, Schorlemmer and Woessner (2008) proposed the proba-
bilistic magnitude of completeness (PMC) method to assess detection capabilities
of a seismic network using empirical data. This method has been applied to vari-
ous data sets (e.g., Nanjo et al. 2010b; Schorlemmer et al. 2010b; Plenkers et al.
2011) and is illustrated in short in the next section.

http://www.corssa.org/glossary/#hypocenter
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All these methods are broader in the sense that they are not targeted to the com-
pleteness magnitude itself. These methods can be used to design and to evaluate
particular performance measure of the seismic network.

5.2.1 Probabilistic Magnitude of Completeness (PMC)

Schorlemmer and Woessner (2008) proposed the probabilistic magnitude of com-
pleteness (PMC) method to assess detection capabilities of a seismic network. Within
this method, the detection probability of each network station for any magnitude
at a given distance from the station needs to be defined, then the probability of
detecting an earthquake occurring at a specific location can be computed by basic
combinatorics. The method uses empirical data (phase data, station metadata, and
attenuation relation used for magnitude determination) and results in three essential
products:

1. Station detection probabilities PD(m,L) of a seismic station as a function of
magnitude m and hypocenter-station distance L: Characteristic probability dis-
tributions are derived from phase picks for each station describing probabilities
of detecting an earthquake of a given magnitude at a given distance from the
station. Detection means to have a phase determined at a particular station. For
each earthquake during the on-time of a station, a data triplet is generated, con-
sisting of three parameters: magnitude m of the earthquake, hypocentral distance
L and a binary value for phase picked or not picked, plotted as a green dot or
red dot, respectively (Figure 3).

2. Earthquake detection probabilities PE(m,x, t) of an earthquake of magnitude
m at a given location x and time t based on the available network stations:
Combining the probability distributions PD(i,m, L) of all stations i using basic
combinatoric principles, probabilities of detecting events of a given magnitude
at the minimum number of required stations can be mapped. An example for
detection probabilites for different magnitude levels is shown in Figure 4.

3. The probability-based magnitude of completeness MP (x, t) for a predefined prob-
ability level P at a given location x and time t based on the available network
stations: It equals the lowest magnitude for which the probability of detection
PE(m,x, t) is 1−Q, with Q being the complementary probability that an event
will not be detected:

Mp(x, t, Q) = min
m∈M

m | PE(m,x, t) = 1−Q (3)

where M is the interval of possible completeness magnitudes.

www.corssa.org
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Seismic networks are subject to changes, e.g. new stations are deployed while
others are removed or exchanged. Each new configuration leads to a change in de-
tection probabilities, such that detection probabilities are only valid for a particular
network configuration. PMC, as well as other network based methods, are able to
account for this and thus monthly MP (x, t, Q) maps are calculated for Southern
California, Italy and Switzerland (accessible at http://completeness.usc.edu/).
In general every time the network is changed, maps should be recomputed, yet this
is impossible to track for an independent resource outside the authoritative agency.

5.2.2 Assumptions, Features and Limits of PMC

The PMC approach is considered the faster out of the network-based approaches
since it only uses empirical and parametric data, not waveforms. Yet, there are some
assumptions and open issues that need to be considered when applying the method:

1. PMC assumes isotropic attenuation while it has been shown to be anisotropic.
PMC can account for this when accounting for azimuthal dependency as shown
in Plenkers et al. (2011). The amount of data may however play a limiting factor
here.

2. The initial amount of data to generate the station detection probabilities PD(m,L)
has a lower limit yet the lower limit is not quantified as well as its influence on
the overall earthquake detection probability PE nor the MP .

3. The smoothing approach to create PD tends to overestimate the station detection
probabilities for very low magnitudes and short distances which can lead to small
values of MP (x, t, Q). Bachmann (2011) (Chapter 6) evaluated this issue and
describes how to perform sensitivity analyses to assess an optimal value of Q
considering the lower detection probability thresholds of stations that should
still be considered in the detection process.

4. Computation time may become an issue in case of large networks since the num-
ber of combinations to compute PE increases dramatically (Bachmann 2011).

5. Large aftershock sequences or induced seismicity may alter the station detec-
tion probabilities PD, mainly reducing detection probabilities in narrow distance
bands over the entire magnitude range of interest. Removing this feature during
data analysis is a requisite but cumbersome and an automated solution has yet
to be found (Bachmann 2011).

6. Comparison between completeness estimates from catalog-based approaches and
MP (x, t) is not trivial since the latter is explicitly time-dependent. Nanjo et al.
(2010b); Schorlemmer et al. (2010b) show how to compare MP and Mc maps,
shortly discussed in Section 7.

http://completeness.usc.edu/
http://www.corssa.org/glossary/#time-dependent_time-independent
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Fig. 3 Methodology sketch to assess station detection probability PD(m,L). (Left) Data triplets (picked [plus
triplet, green] / not picked [minus triplet, red], hypocentral distance to station, magnitude) are generated for each

event that occurred while a station (blue triangle) was in operation. If an event was picked (green star) or not

picked (red star) at the station, we generate a plus triplet or minus triplet, respectively. (Bottom) Plot of all data
triplets of station POB from the Southern California Seismic Network (SCSN) for the period 1 January 20011 July

2007. Green dots indicate plus triplets (picked events); red dots indicate minus triplets (not picked events). (Right)

Station detection probability matrix as function of magnitude and distance for station POB derived from raw data
triplets. (Top) Smoothed PD(m,L) that enters further calculations. Modified with courtesy from Schorlemmer and

Woessner (2008).

www.corssa.org
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Fig. 4 Map of detection probabilities, PE(M,x, t), for different magnitudes on 1 July 2007 at a depth of 7.5
km. Gray boxes mark events of magnitude under consideration from the period 1 January 20011 July 2007. Gray

triangles mark stations in operation on 1 July 2007. The white-gray polygon indicates the authoritative region of
SCSN. (Top) Map of PE(m = 3.4). The two black lines mark the P = 0.99 and P = 0.99999 contours. (Center)
Map of PE(m = 1). The black line marks the P = 0.99 contour. (Bottom) Map of PE(m = 1.8). The two black
lines mark the P = 0.99 and P = 0.99999 contours. The SCSN intends to be complete at the ML = 1.8 level for its

authoritative region. Courtesy of Schorlemmer and Woessner (2008).
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6 Catalog-based Techniques to Evaluate Mc

We present a non-exhaustive but representative list of catalog-based techniques to
assess Mc:

1. the Maximum Curvature (MAXC) technique (e.g., Wiemer and Wyss 2000) (Sec-
tion 6.1),

2. the Goodness-of-Fit Test (GFT) (Wiemer and Wyss 2000) (Section 6.2),
3. the Mc by b−value stability (MBS) approach (Cao and Gao 2002) (Section 6.3),
4. Mc from the Entire Magnitude Range (OK1993, EMR) (Ogata and Katsura 1993;

Woessner and Wiemer 2005) (Section 6.4),
5. the Median-based analysis of the segment slope (MBASS) (Amorèse 2007) (Sec-

tion 6.5)
6. and the day-to-night noise modulation (day/night method) (Rydelek and Sacks

1989) (Section 6.6).

All techniques, except for the Rydelek and Sacks (1989) method, are based on the va-
lidity of the G-R law (Fig. 5). The main distinction is whether they are parametric
(GFT, MBS, EMR) or non-parametric (MAXC, MBASS). Parametric techniques
are based on fitting the FMD while non-parametric techniques are based on the
evaluation of changes in the FMD (e.g., possible breaks in the slope). At the present
time, there is no consensus on which technique to use to compute Mc and different
techniques may provide significantly different results (Fig. 5, Table 1). Table 2 sum-
marizes the pros and cons of each technique. General issues linked to Mc reliability
and uncertainty are discussed using synthetic data in Section 6.7.
The different techniques are tested on the data sets from Woessner and Wiemer
(2005), which correspond to subsets of the Earthquake Catalog of Switzerland
(ECOS), the Northern California Seismic Network (NCSN) regional catalog, the
earthquake catalog of a volcanic area maintained by the National Research In-
stitute for Earth Science and Disaster Prevention (NIED), the Harvard Centroid
Moment Tensor (CMT) global catalog and the International Seismological Centre
(ISC) global catalog (see Woessner and Wiemer (2005) for more details). Mc es-
timates from FMD-based techniques are listed in Table 1. Uncertainties are also
considered, using the Monte Carlo approximation of the bootstrap method (Efron
1979; Woessner and Wiemer 2005).

6.1 Maximum Curvature (MAXC) technique

The Maximum Curvature (MAXC) technique (Wyss et al. 1999; Wiemer and Wyss
2000) is a fast and straightforward way to estimate Mc and consists in defining
the point of the maximum curvature by computing the maximum value of the first

www.corssa.org
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ECOS NCSN NIED CMT ISC

MAXC 1.16 ± 0.10 1.20 ± 0.00 1.00 ± 0.00 5.31 ± 0.03 4.30 ± 0.01

GFT 1.39 ± 0.17 1.12 ± 0.04 1.38 ± 0.06 5.30 ± 0.00 4.66 ± 0.05

MBS 1.53 ± 0.16 1.48 ± 0.10 1.97 ± 0.10 5.80 ± 0.09 4.80 ± 0.00

EMR 1.48 ± 0.08 1.29 ± 0.03 1.40 ± 0.01 5.49 ± 0.02 -

MBASS 1.28 ± 0.29 1.25 ± 0.34 1.42 ± 0.13 5.44 ± 0.07 5.02 ± 0.45

Table 1 Mc estimates and standard deviation σ0 obtained from 200 bootstrap samples (Efron 1979) for differ-
ent FMD-based techniques and data sets. We test the following techniques: Maximum Curvature (MAXC) tech-

nique, Goodness-of-Fit Test (GFT), Mc by b−value stability (MBS), Entire-magnitude range (EMR) technique and

Median-based analysis of the segment slope (MBASS) - We use the same earthquake catalog subsets as in Woessner
and Wiemer (2005). All FMDs are shown in Figure 5.

Technique Main ref. Pros Cons

MAXC Wiemer and Wyss (2000) non-parametric underestimates Mc in bulk data

straightforward

statistically robust

GFT Wiemer and Wyss (2000) G-R deviation definition 90% conf. not always reached

may underestimate Mc

MBS Cao and Gao (2002) based on b−value stability may overestimate Mc

relatively high uncertainty

EMR Woessner and Wiemer (2005) complete FMD model assumption below Mc

4 parameters to fit

MBASS Amorèse (2007) non-parametric main discontinuity may not be Mc

relatively high uncertainty

Day/Night Rydelek and Sacks (1989) does not assume G-R law requires declustering
unstable (on bulk data)

Table 2 Pros and cons of some common catalog-based techniques to evaluate Mc. See text for more details about

each one of theses techniques (and other ones).

derivative of the frequency-magnitude curve. In practice, this matches the magnitude
bin with the highest frequency of events in the non-cumulative FMD.
Despite the easy applicability of this approach, Mc is underestimated in the case of
gradually curved FMDs and the use of other techniques providing more conservative
estimates, such as GFT or EMR, has been suggested (Wiemer and Wyss 2000;
Woessner and Wiemer 2005). MAXC provides most of the lowest Mc estimates in
Table 1. However Mignan et al. (2011) showed that MAXC does not underestimate
Mc (compared to the MBASS technique) when considering a local data set in which
heterogeneities in Mc are minimized. It would suggest that the gradual curvature of
a bulk FMD is indeed due to Mc heterogeneities and that the MAXC technique is
valid in high-resolution Mc mapping (see Section 7). The MAXC technique has also
the advantage to require fewer events than other techniques to reach a stable result
(Mignan et al. 2011). This is discussed in more details in Section 6.7.

http://www.corssa.org/glossary/#decluster
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Fig. 5 FMDs of the data sets listed in Table 1 and corresponding Mc estimates (vertical lines).

6.2 Goodness-of-Fit Test (GFT)

The Goodness-of-fit test (GFT), proposed by Wiemer and Wyss (2000), calculates
Mc by comparing the observed FMD with synthetic ones. The goodness-of-fit is
evaluated by the parameter R, absolute difference of the number of events in each
magnitude bin between the observed and synthetic G-R distributions. Synthetic
distributions are calculated using estimated a− and b−values of the observed dataset
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Fig. 6 GFT technique (Wiemer and Wyss 2000) - Residual (100−R) as a function of minimum magnitude cutoff

Mco for the NCSN catalog subset. Mc (vertical line) is found at the first magnitude cutoff at which the confidence
R = 95% is reached.

for M ≥Mco as a function of ascending cutoff magnitude Mco.

R(a, b,Mco) = 100−
(∑Mmax

Mco
| Bi − Si |∑
iBi

100

)
(4)

where Bi and Si are the observed and predicted cumulative number of events in
each magnitude bin.
Mc is found at the first magnitude cutoff at which the observed data for M ≥Mco is
modeled by a straight line (in log-lin plot) for a fixed confidence level, e.g. R = 90%
or 95%. Figure 6 shows the residual (or 100−R) at different magnitude cutoffs for
the NCSN subset. Mc is defined in this example as the first magnitude bin at which
the residual falls below the horizontal line of the 95% fit. It is interesting to note
that for higher magnitude cutoffs, the residual remains low, which corresponds to
the G-R part of the FMD. When the 95% level of fit is not obtained, a 90% level is
a compromise. If a 90% confidence cannot be reached, the MAXC estimate is used
instead (ZMAP software (Wiemer 2001) definition). Woessner and Wiemer (2005)
showed that the GFT-90% approach leads to Mc estimates on the lower end of the
Mc distribution compared to other techniques, with results close to the MAXC ones
(see also Table 1).
Kagan (2003) proposed an approach similar to the GFT but based on a more con-
ventional statistical method.
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6.3 Mc by b−value stability (MBS)

Cao and Gao (2002) estimated Mc using the stability of the b−value as a function
of cutoff magnitude Mco, referred to as MBS by Woessner and Wiemer (2005). This
model is based on the assumption that b−value estimates ascend for Mco < Mc and
remain constant for Mco ≥ Mc. If Mco < Mc, the resulting b−value is incorrect. As
Mco approaches Mc, the b−value approaches its true value and remains constant for
Mco > Mc, forming a plateau (see Figure 2).
The authors arbitrarily defined Mc as the magnitude for which the change in b−value
∆b between two successive magnitude bins is smaller than 0.03. Woessner and
Wiemer (2005) found this criterion to be unstable since the frequency of events
in single magnitude bins can vary strongly. To base the approach on an objective
measure and to stabilize it numerically, Woessner and Wiemer (2005) used the
b−value uncertainty δb according to Shi and Bolt (1982) as criterion:

δb = 2.3b2

√√√√∑N
i=1(Mi − 〈M〉)2

N(N − 1)
(5)

with 〈M〉 being the mean magnitude and N the number of events (note that the sec-
ond square exponent is missing in Eq. 4 of Woessner and Wiemer (2005)). Mc is then
defined as the first magnitude increment at which ∆b =| bave − b |≤ δb (Figure 7).
The arithmetic mean bave is calculated from b−values of successive cutoff magnitudes
Mco in half a magnitude range dM = 0.5 such as bave =

∑Mco+dM
Mco

b(Mco)∆m/dM for
a bin size ∆m = 0.1. Large magnitude ranges are preferable, and would be justified
for FMDs that perfectly obey a power-law. Woessner and Wiemer (2005) found
that the MBS method leads to the highest Mc values compared to other techniques,
in agreement with results of Table 1.
Marsan (2003) introduced a method computing the b−value and the log-likelihood
of completeness for earthquakes above a certain cutoff magnitude. The log-likelihood
of completeness is defined as the logarithmic probability that the G-R law fitted to
the data above the cutoff magnitude can predict the number of earthquakes in the
magnitude bin just below the cutoff magnitude. Mc is chosen so that the b−value
drops for m < Mc and the log-likelihood drops for m = Mc. The method is similar
to the MBS one.

6.4 Mc from the Entire Magnitude Range (OK1993, EMR)

Woessner and Wiemer (2005) proposed a method to estimate Mc that uses the
entire magnitude range (EMR), thus including events below Mc. They provided a
model consisting of two parts: the G-R law for the complete part, and the cumulative
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Fig. 7 MBS technique (Cao and Gao 2002) modified by Woessner and Wiemer (2005) - b−value estimate as a

function of minimum magnitude cutoff Mco for the NCSN catalog subset. Mc is the first magnitude increment at
which ∆b =| bave − b |≤ δb (dashed uncertainty envelope). The dashed vertical line represents the mean Mc and

the dotted lines ±1σ obtained from bootstrapping (see Table 1).

normal distribution for the incomplete part of the non-cumulative FMD. The model
attempts to reproduce the entire frequency-magnitude distribution, thus fits the
incompletely observed part, a technique which has been questioned (Kagan 2002).
The EMR approach is similar to that of Ogata and Katsura (1993) (hereafter referred
to as OK1993).
The non-cumulative FMD can be described by the intensity λ (normalized number
of events) at magnitude m as

λ(m) = λ0(m)q(m) (6)

with
λ0(m | β) = exp(−βm) (7)

the G-R law, β = b log 10 and q(m) a detection function with 0 ≤ q ≤ 1. q is
commonly defined as the cumulative normal distribution of mean µ and standard
deviation σ (e.g., Ogata and Katsura 1993, 2006; Iwata 2008)

q(m | µ, σ) =
∫ m

−∞

1√
2πσ

exp
−(x− µ)2

2σ2
dx (8)

By substituting Eqs. 7 and 8 in Eq. 6, OK1993 provided a model to fit the FMD
over the entire magnitude range. The completeness magnitude is only implicit with

Mc(n) = µ+ nσ (9)

where n indicates the confidence level. n = 0 means that 50% of the events are
detected above Mc. n = (1, 2, 3) means that 68%, 95% and 99% of the events are
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Fig. 8 Observed and predicted FMD for the subset of the NCSN catalog. Parameters of the OK1993 model are

determined from the maximum-likelihood method (by using Eq. 10): b = 1.1, µ = 1.1 and σ = 0.25. It yields
Mc(3) = 1.60 (95% confidence) and Mc(3) = 1.85 (99% confidence). Vertical dashed lines represent µ, µ + 1σ,

µ+ 2σ ad µ+ 3σ.

detected respectively. The parameters θ = (β, µ, σ) are simultaneously obtained
by maximizing the log-likelihood function logL(θ) =

∑
i log f(mi | θ) with the

normalized density function f(m | θ) = cλ(m | θ), c being a normalization factor.
In the OK1993 model:

f(m | β, µ, σ) = β exp(−β(m− µ)− β2σ
2

2
)q(m | µ, σ) (10)

(Ogata and Katsura 2006). Figure 8 shows the observed and predicted FMD in the
case of the NCSN subset, with the OK1993 model parameters determined by using
Eq. 10. The OK1993 model parameters for the ECOS, NCSN, NIED and CMT
subsets are listed in Table 3. For the ISC subset, the OK1993 model is not valid as
the incomplete part of the FMD does not show a decrease in the number of events
for low m (Fig. 5).

ECOS NCSN NIED CMT ISC

µ 1.2 1.1 1.1 5.2 -

σ 0.25 0.25 0.35 0.15 -

b 1.1 1.1 0.9 1.0 -

Mc(95%) 1.70 1.60 1.80 5.50 -

Mc(99%) 1.95 1.85 2.15 5.65 -

MEMR
c 1.48 ± 0.08 1.29 ± 0.03 1.40 ± 0.01 5.49 ± 0.02 -

Table 3 OK1993 model parameter estimates for different catalog subsets. Parameters are obtained from a maximum
likelihood approach (Eq. 10) with tested values incremented every 0.1 for b and µ and every 0.05 for σ. Mc is

determined from Eq. 9. MEMR
c is given for comparison.
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In the EMR method, Woessner and Wiemer (2005) use the following model, where
Mc is explicit:

λ(m | µ, σ,m) =


λ(m | µ, σ,m < Mc) =

∫Mc
−∞

1√
2πσ

exp −(x−µ)2

2σ2 dx

λ(m | µ, σ,m ≥Mc) = exp(−β(m−Mc))

(11)

Figure 9 shows the maximum likelihood estimates and sample frequency-magnitude
plots for ascending cut-off magnitudes of the EMR-model for estimate for the NCSN
catalog subset. For thresholds Mco above the best completeness value, the EMR-
method does not describe the gradual curvature of the FMD correctly by not mul-
tiplying the detection function to the theoretical G-R law (compare Eqs. 6 and 11).
Nonetheless, EMR results are in the range of Mc values expected by other tech-
niques (Table 1). Noteworthy, Mc estimates derived from the OK1993 model are
more conservative (Table 3), i.e. the Mc values are generally larger than the ones
from EMR.

6.5 Median-Based Analysis of the Segment Slope (MBASS)

The Median-Based Analysis of the Segment Slope (MBASS), proposed by Amorèse
(2007), is a non-parametric technique to estimate Mc. It is based on an iterative
method designed to search for multiple change points in the non-cumulative FMD.
The null hypothesis acceptance or rejection is based on the Wilcoxon rank sum test.
Different discontinuities in the FMD can be found by the MBASS technique, with the
main discontinuity corresponding to Mc. Other discontinuities may correspond to
upper-magnitude breakpoints (e.g., Wesnousky 1994). Figure 10 shows the MBASS
statistics, i.e. the distribution of the main and auxiliary discontinuities, for the
NCSN catalog subset. Amorèse (2007) tested the MBASS method on the same
catalogs used by Woessner and Wiemer (2005) and showed that the MBASS and
EMR techniques give similar results when uncertainty is taken into account. This
is verified in Table 1, which also indicates that MBASS uncertainties are larger
compared to other techniques. The MBASS algorithm (in R language) is published
in Amorèse (2007).
The MBASS technique is used in Mignan et al. (2011) where results are compared
with the ones from the non-parametric MAXC technique. The authors used the
difference ∆ = MMBASS

c −MMAXC
c as a proxy to the degree of curvature of the

FMD and showed that ∆ tends to zero when spatiotemporal heterogeneities in Mc

are minimized. For bulk data sets, the MBASS technique provides a conservative
estimate compared to the MAXC technique.
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Fig. 9 EMR technique (Woessner and Wiemer 2005) - Maximum likelihood estimate of Mc for the subset of the

NCSN catalog based on the EMR model (Eq. 11), not to confound with the original OK1993 model (Figure 8).
By using Eq. 11 instead of Eq. 6, the EMR method fails to describe the gradual curvature of the FMD above
m = MMAXC

c = 1.2. Vertical lines represent Mco = 1.1, 1.3, 1.5 and 1.7.
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Fig. 10 Distribution of the main and auxiliary discontinuities computed using the MBASS technique (Amorèse

2007) on 200 bootstrap samples of the NCSN catalog subset. The main discontinuity corresponds to MMBASS
c .

6.6 Day-to-night noise modulation

The day-to-night noise modulation method (hereafter referred to as day/night method),
introduced by Rydelek and Sacks (1989), estimatesMc based on detectability changes
expected between day and night. This is the only catalog-based method which does
not assume self-similarity of the earthquake process (i.e. the G-R law). The test is
based on two assumptions: (1) that earthquakes follow a Poisson distribution and
(2) that the daytime noise level is increased relative to night-time due to anthro-
pogenic activity and wind.
Figure 11 - similar to Figure 1 of Rydelek and Sacks (1989) - illustrates how the
day/night method works. In this example, earthquakes follow a Poisson distribution
and events below Mc are not detected during day hours (from 6:00 to 18:00) with
M1 < Mc < M2. For each magnitude increment (here M1 and M2), the occurrence
time of each event is used to form a phase angle on the local 24-hour clock. Each
phase angle is assigned unit amplitude and then a phasor sum is performed over the
set of individual unit phasors. The resulting phasor sum or ’walkout’, R, is compared
with that expected from a random process. The authors considered that a signifi-
cant bias in day-to-night recording is obtained when R exceeds R95 = 1.73

√
N , the

95% confidence level with N the number of events. This is verified in Figure 11 for
simulated data that follow the two assumptions of the day/night method.
In practice, the seismicity catalog must first be declustered to be consistent with
assumption 1. Declustering should however always be used with caution. We tested
the method on a declustered version of the NCSN catalog subset using the win-

http://www.corssa.org/glossary/#Poisson_distribution
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Fig. 11 Day-to-night noise modulation (day/night) method of Rydelek and Sacks (1989) applied to a synthetic

earthquake sequence - Earthquakes follow a Poisson distribution and events below Mc are not detected during day

hours (from 6:00 to 18:00) when the noise is higher (within grey threshold). With M1 < Mc < M2, the phasor plot
for M1 shows a significant walkout, extending outside of the 95% confidence level for a Poisson process. For M2,

there is no bias in the walkout. This figure is similar to Figure 1 of the original 1989 paper.

dow method of Gardner and Knopoff (1974). This declustering method and other
ones are described in detail in the CORSSA article by van Stiphout et al. (2010). We
found that there is no clear magnitude threshold above which R < R95. For instance
the condition is not verified for Mco = 1.0, 1.7 or 2.1 but is for other magnitude
increments. Noteworthy, anthropogenic noise varies in space and a bulk analysis
may suffer from this. This is not investigated in the present article. It should be
emphasized that any claim of a real deviation from self-similarity at low m based
on bulk data is highly questionable as the most likely reason for a deviation from
the G-R law is a spatiotemporal variation in Mc (Wiemer and Wyss 2000; Mignan
et al. 2011).
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6.7 Diagnostics from Synthetic Catalogs

Whether or not a technique gives a correct estimate of Mc is something to assess. We
showed above from real seismicity catalogs that the different FMD-based techniques
provide different results with the MAXC and GFT estimates usually on the lower
bound and the MBS estimates on the higher bound (Fig. 5, Table 1). The reliability
of Mc techniques can also be investigated from synthetic catalogs in which the true
Mc is known (Woessner and Wiemer 2005; Mignan et al. 2011).
In Woessner and Wiemer (2005), the authors defined a synthetic catalog by using
the EMR model (Eq. 11) with parameters θ = (Mc = 1, b = 1, µ = 0.5, σ = 0.25).
From the synthetic dataset, random samples of ascending size 20 ≤ n ≤ 1500 were
drawn and each time, Mc computed for 1000 bootstrap samples. Noteworthy, the
fact that the authors used only one unique random sample per size n may explain
the variability observed in their results (their Figure 5). The authors showed that:
the EMR method is well capable of recovering the true Mc, the MBS approach
underestimates Mc substantially for small sample sizes (n ≤ 250) and shows the
strongest dependence on n, both the MAXC and GFT-95% approaches underesti-
mate the true Mc by about 0.1 with MAXC consistently calculating the smallest
value. The authors found that bootstrap uncertainty decreases with increasing sam-
ple size, except for the MBS technique, and that both MAXC and EMR approaches
result in reasonable values in small data sets. For consistency between techniques,
Woessner and Wiemer (2005) fixed nmin = 200. In regards to the reliability of the
bootstrap approach, they found that estimates of uncertainties stabilize above 200
samples.
In Mignan et al. (2011), the authors defined a synthetic catalog by using the original
model of Ogata and Katsura (1993) with parameters θ = (b = 1, µ = 2, σ = 0.3).
They then randomly selected 1000 samples (in) of size n, repeating the operation
for n = (4, 5, 6, 7, 8, 9, 10, 20, 50, 100, 500, 1000). For each sample in, the authors es-
timated the mean completeness magnitude M i,n

c and its standard deviation σi,n0 by
using the MAXC technique on bootstrap samples. They also defined the metric εi,n

εi,n =
|M i,n

c −Mc |
σi,n0

(12)

which is the absolute error of the Mc estimate based on the ith sample of size n,
normalized by the corresponding estimated standard deviation. Bootstrap uncer-
tainty on Mc estimates is tacitly assumed to follow a normal distribution with mean
Mc and standard deviation σ0 (Woessner and Wiemer 2005). If this is the case, the
0.68, 0.95 and 0.99 percentiles of the distribution Pn(ε) should be equal to 1, 2 and
3 respectively. Mignan et al. (2011) observed that these percentiles are lower than
the values expected by a normal distribution indicating that bootstrapping provides
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Fig. 12 Mc as function of the sample size n for different FMD-based techniques. Standard deviation ±σ0 is

represented by dashed curves. Values are averaged over 100 random samples per sample size. Horizontal lines
represent Mc(50%), Mc(68%), Mc(95%) and Mc(99%), following the OK1993 model.

conservative uncertainty estimates for MMAXC
c for nmin = 4. For other techniques

(GFT, EMR and MBASS), they found nmin ∼ 100 − 200. The authors obtained
similar results when using 200 or 1000 bootstrap samples. Here nmin means that the
uncertainty estimate is reliable for samples of this size or larger. The uncertainty
may however be very large for small samples and a higher nmin considered to get a
more robust Mc estimate.
Similarly to Woessner and Wiemer (2005) but with a synthetic catalog based on
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the OK1993 model with parameters θ = (b = 1, µ = 2, σ = 0.3), we investigated the
variations of Mc and its standard deviation σ0 with the sample size n, for different
FMD-based techniques (MAXC, GFT, MBS, EMR and MBASS). We assumed that
bootstrapping provides reliable uncertainty estimates for any technique. We drew
100 random samples of size n, with n = (5, 10, 20, 50, 100, 200, 500, 1000, 2000). Fig-
ure 12 shows the Mc and its standard deviation σ0, averaged over the 100 random
samples, for the different sample sizes n. For all techniques, σ0 decreases with in-
creasing n. In agreement with Woessner and Wiemer (2005), the MBS approach
underestimates Mc substantially for small sample sizes (n ≤ 50) and shows the
strongest dependence on n. The MBASS technique cannot compute Mc for n < 20.
The nmin = 200 threshold proposed by Woessner and Wiemer (2005) appears as
a reasonable choice for most techniques, although the averaged MMAXC

c remains
stable at very low n. As in real catalogs, MAXC provides the lower Mc estimates
(MMAXC

c ∼ µ) and MBS the higher ones (MMBS
c > µ + σ). Other techniques pro-

vide intermediary results with all results significantly lower than the 95% confidence
level (µ+ 2σ) expected by the OK1993 model.
We emphasize that these results assume the validity of the OK1993 model to de-
scribe the FMD. Other models may favor other techniques. For instance, Woessner
and Wiemer (2005) found that the EMR method is well capable of recovering the
true Mc, which is to be expected for an FMD described by the EMR model. Sim-
ilarly, MAXC by definition will always underestimate Mc in the OK1993 model,
which describes well bulk data sets. Following Mignan et al. (2011), the OK1993
model may not be appropriate when Mc heterogeneities are minimized (see Section
7). Moreover, even if the uncertainty estimate obtained for a given technique is low,
it does not mean that the Mc estimate is reliable, only that the output estimate is
robust in regards of the data set considered. This is in agreement with the fact that
the ranges of possible Mc obtained from different techniques may not overlap, as
they do not necessarily correspond to the same definition of Mc.

6.8 Exercise: Strategy to estimate Mc for a Single Catalog Data Sample

Given the variety of catalog-based approaches, one strategy to estimate Mc for a
given data sample is to start with the simplest method, namely the maximum cur-
vature approach (MAXC) for the first estimate. To understand possible differences,
do the same with some other techniques. Depending on the purpose of a given study,
one then can estimate the uncertainty using a Monte-Carlo bootstrap technique and
then further explore with additional methods.
As an exercise with the MATLAB software package, download the archive FMD-
calc.tgz or FMDcalc.zip for this article and reproduce the values and figures. The
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usage is provided in the Scripts Samplescript.m and SampleScriptBootstrap.m. Then
try other data sets.

7 Catalog-based Techniques to Map Mc(x, y, z, t)

An important challenge is the understanding and assessment of possible spatiotem-
poral changes in Mc. Unless the space-time history of Mc(x, y, z, t) is taken into
consideration, a study would have to conservatively assume the highest Mc observed
(Wiemer and Wyss 2000). This maximum is difficulty accessible from a simple bulk
analysis, which is by definition based on an average data sample. Temporal changes
are discussed in Section 7.1 and spatial changes in Sections 7.2, 7.3 and 7.4, respec-
tively.

7.1 Temporal Variations in Mc

Temporal changes in Mc origin from the evolution of the seismic network (pseudo-
permanent changes) or are due to large earthquakes sequences, aftershock or swarm
activity (transient changes). Aftershock sequences often introduce the largest fluc-
tuations in Mc.
Changes in seismic networks often correspond to the addition of new stations or
to the update of existing hardware and software. Transitional phases in a network
are usually well identified and show clear shifts in Mc estimates (e.g., Hutton et al.
2010). With the Mc(t) information, one can select a data set over a time period in
which Mc(t) remains almost constant. If the analysis requires a longer time period
and a fixed estimate for completeness, then Mc = maxMc(t), which can significantly
alter the number of events available.
In case of an aftershock sequence, some events are too small to be detected within
the coda of larger events (i.e. increased noise), and thus Mc increases. Figure 13
shows the evolution of Mc through time for the aftershock sequence of the 1992
Landers earthquake. We used the data set of Woessner and Wiemer (2005) and
the same moving window approach. To generate the time series, we used a window
size of 1000 events to compute Mc while moving the window by 250 events. Mc is
computed using the MAXC and MBASS techniques. Similar results are obtained
for both techniques, suggesting homogeneity in Mc, which is to be expected in data
sets representing a small spatiotemporal volume (Mignan et al. 2011). In this ex-
ample, Mc(t) increases up to two units in the first days after the main shock. This
phenomenon can significantly impact aftershock statistics studies if not evaluated
correctly. Iwata (2008) found a similar trend when investigating parameter µ(t) of
the OK1993 model (see Section 6.4).

www.corssa.org
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Fig. 13 Mc as a function of time for the 1992 Landers aftershock sequence. Moving window approach with a

window of 1000 events, moved by 250 events. Data set from Woessner and Wiemer (2005). Dashed curves represent
±σ0 obtained from 200 bootstrap samples.

7.2 Standard Catalog-based Mc Spatial Mapping

The commonly used catalog-based mapping approach (hereafter referred to as stan-
dard method) consists in estimating Mc(x, y) from the FMD generated from events
located in a cylindrical volume of fixed radius R or of fixed number of events N , cen-
tered on each node of a spatial grid (Wyss et al. 1999; Wiemer and Wyss 2000). Any
FMD-based Mc technique can be implemented (e.g., MAXC, GFT, EMR, MBASS).
For the constant-R approach, the minimum number of events Nmin is fixed to avoid
unstable Mc results. R must be large enough to have a sufficient number of nodes
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with Mc estimates but small enough to avoid over-smoothing. For the constant-N
approach, the maximum radius Rmax is fixed to avoid over-smoothing. N must be
large enough to obtain reliable Mc estimates but small enough to avoid gaps. In both
cases, finding the best compromise may be challenging with selected values based
on an educated guess. Noteworthy, while variations with depth z are averaged over
the cylindrical volumes in mapping on an horizontal plane, various Mc(x, y, z) cross-
sections are possible (e.g., Wiemer and Wyss 2000). This approach has been used
in numerous studies. Recent applications include Woessner and Wiemer (2005) for
a global catalog, Hutton et al. (2010) for Southern California, Schorlemmer et al.
(2010a) for Italy, Nanjo et al. (2010a) for Japan and Mignan et al. (2011) for Tai-
wan.
This approach has however two basic limitations: (1) the choice of a fixed cylin-
der radius is arbitrary compared to the true Mc resolution (Mignan et al. 2011)
while the use of a constant number of events results in an unrealistic and variable
relationship to actual seismicity (Rydelek and Sacks 2003) and (2) gaps remain in
regions of low seismicity (i.e. N < Nmin) where Mc is not computed. To illustrate
these limitations, Figure 14 shows the seismicity map for the NCSN subset and 3 Mc

maps created by using the constant radius approach with R = 5, 20 and 50 km and
Nmin = 50. Note that over-smoothing may be identified by the presence of artificial
circular constant Mc patches of radius R. A detailed description of the standard Mc

mapping approach and of its limits is given by Mignan et al. (2011).

7.3 Bayesian Magnitude of Completeness (BMC) Spatial Mapping

Mignan et al. (2011) proposed the Bayesian Magnitude of Completeness (BMC)
method to map Mc by avoiding the shortcomings of the standard mapping approach
of Wiemer and Wyss (2000). BMC requires knowledge of the seismic stations lo-
cations in addition to access to the earthquake catalog. It is a two-step procedure
consisting in (1) a spatial resolution optimization to minimize spatial heterogeneities
and uncertainties in Mc estimates and (2) a Bayesian approach to merge prior in-
formation on the relationship between Mc and the density of seismic stations with
locally observed Mc, weighted by their respective uncertainties.
The BMC spatial optimization procedure consists in estimating Mc from the FMD
that corresponds to events located in a cylindrical volume of radius R

R(d) =
1

2

(c1d
c2 + σ

c1

) 1
c2

−
(
c1d

c2 − σ
c1

) 1
c2

 (13)

where d is the distance to the kth nearest seismic station (with k usually being
between 3 and 5) and σ is the Mc interval below which variations cannot be resolved.

www.corssa.org


Completeness Magnitude 31

Fig. 14 Standard Mc mapping (constant radius approach) for the NCSN subset. Mc is evaluated using the MAXC
technique (see Section 6.1). Many locations have no Mc estimate due to low seismicity (Nmin = 50). Increasing the

radius from R =5 km to 50km reduces the number of gaps but also increases spatial smoothing. Over-smoothing

may be identified by the presence of artificial circular constant Mc patches of radius R.
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Eq. 13 is derived from the prior model

Mpred
c = c1d

c2 + c3 (14)

where parameters c1, c2 and c3 are determined empirically. σ is the standard devi-
ation of the residual between prior and observed Mc values. For Taiwan, Mignan
et al. (2011) found c1 = 5.96, c2 = 0.0803, c3 = −5.80 and σ = 0.18 for k = 4
with d and R in km. The parameter k is the minimum number of stations to be
triggered for initiating the location procedure in the network. Figure 15 shows a plot
of the prior model (Eq. 14) as well as an Mpred

c map for a synthetic seismic network
with seismic stations locations described by a random walk. An increase of Mc with
distance to the kth seismic station is also observed in California, Alaska and Japan
(Wiemer and Wyss 2000; Nanjo et al. 2010a). Eq. 14 additionally indicates that Mc

evolves faster in the dense parts of the seismic network than in the outer regions.
This is the basis of the variable-R approach (Eq. 13): At a node located d = 20 km
from the 4th nearest seismic station, R = 6 km, for d = 100 km, R = 26 km and for
d = 200 km, R = 50 km. This approach avoids having to make an educated guess
on the value of R and avoids over-smoothing by making R variable in space. While
any FMD-based method can be implemented in BMC to compute Mc, Mignan et al.
(2011) suggested using MAXC, which has been shown to not underestimate Mc in
data sets where Mc heterogeneities are minimized.
The second step of the BMC approach consists in merging prior information (Eq.
14) with observations, based on Bayes Theorem, with

Mpost
c =

Mpred
c σ2

0 +M obs
c σ2

σ2 + σ2
0

(15)

which is a weighted average of the predicted and observed completeness magnitude,
where the weights are proportional to their respective uncertainties (Mignan et al.
2011). In contrast with the standard mapping approach (Section 7.2), the resulting
Mpost

c map (or BMC map) shows no gap as the prior model provides a continuous
estimate of Mc in space (Fig. 15).
One limitation of the BMC method is that the prior model (Eq. 14) is not well
constrained in regions of low seismicity or where seismicity is concentrated in dense
areas of the seismic network. If the prior model cannot be defined from regional
data, one may try to use the prior model defined for another region by assuming that
the relationship Mc = f(d) is region-independent. This remains to be thoroughly
investigated. Moreover, the current version of the BMC method does not include
temporal changes in Mc and thus requires the use of a dataset defined over a time
period of stable seismic network configuration (see Mignan et al. (2011) for more
details).
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Fig. 15 BMC mapping approach of Mignan et al. (2011). The prior model (Eq. 14) indicates that Mc increases

with the distance to the kth nearest seismic station and that it evolves faster in the dense parts of the seismic
network than in the outer regions. Dashed lines represent ±σ = 0.18. An Mpred

c map can be generated from Eq.

14 using the seismic stations locations represented by the triangles. The locations of the stations of the synthetic

seismic network are described by a random walk.

7.4 Comparison of Network-based and Catalog-based Mc Spatial Mapping

Do catalog-based techniques and network-based techniques (see Section 5.2) pro-
vide similar results? It should first be noted that a comparison is not straightfor-
ward as the definitions of the completeness are different. Comparison of traditional
FMD-based Mc mapping and PMC (MP ) mapping is given by Schorlemmer and
Woessner (2008) for Southern California and by Nanjo et al. (2010b) for Switzer-
land. For Southern California, the authors compared MP obtained for 1 July 2007
and MEMR

c obtained for the period 1 January 2001 - 1 July 2007 and found that
MP estimates were lower than MEMR

c in 77% of nodes, and in some areas were one
unit lower. Underestimating the completeness is problematic as it leads to biased
seismicity analyses (see Section 5.1). The comparison made by Schorlemmer and
Woessner (2008) was however a rough one as both maps were not based on the
same space-time volume: MP is an estimate of completeness for the network at one
specific point in space and time, whereas Mc is a completeness estimate of an earth-
quake sample for a specific space-time volume projected onto one grid node. For
Switzerland, Nanjo et al. (2010b) computed MPmax(x, y), the maximum MP value
observed in the space-time volume used for estimating Mc(x, y). For an overall com-
pleteness, it provides the most conservative estimate of MP as this strategy ensures
to take the value from the time period and cylindrical volume in which the detection
capabilities are worst. The authors found that MP values are generally higher than
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MEMR
c in the case of Switzerland.

We here repeat the procedure for Southern California with Figure 16 illustrating
the difference between MPmax(x, y) and MEMR

c (x, y). The MEMR
c map is the one

obtained by Schorlemmer and Woessner (2008) for the period 1 January 2001 - 1
July 2007 and for a constant cylindrical radius of 20 km. The MPmax map is ob-
tained from the combination of 79 MP maps, one per month from 1 January 2001
to 1 July 2007, downloadable at http://completeness.usc.edu/. At each node,
MPmax(x, y) corresponds to the maximum MP value observed between 1 January
2001 and 1 July 2007 in the cylinder of radius R = 20km centered on (x, y). We find
that MPmax is lower than MEMR

c in central parts of Southern California and higher
in outer regions. Noteworthy, only MP maps at the depth of 7.5 km are available
for download for Southern California. Taking into account possible variations with
depth could only increase MPmax. Comparison is also limited in space as the stan-
dard Mc map shows many gaps (see Section 7.2). At the present time, there is no
comparison available between the PMC and BMC methods (see Section 7.3). Figure
16 also shows some local FMDs at two locations, generated from events in a cylindri-
cal volume of radius R = 20km. We used the same earthquake data set, the legacy
Southern California seismicity catalog for 1 January 2001 - 1 July 2007 available at
http://www.data.scec.org/ftp/catalogs/SCSN_pre2008/. While the EMR esti-
mates are consistent with the G-R law, the PMC estimates are not. The MP metrics
quantifies some degree of detectability but does not seem to relate to catalog-based
completeness. The assumption MPmax = Mc should thus be used with caution in
seismicity analyses.

www.corssa.org
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8 Software packages and Catalog Data

8.1 Software packages

Most techniques to compute Mc (Section 6) as well as the standard Mc(x, y, z, t)
mapping (Sections 7.1 and 7.2) are available in the MATLAB packages

– ZMAP package (Wiemer 2001), available at http://www.earthquake.ethz.ch/
software/zmap

– The accompanying code archive FMDcalc.zip is a collection of functions to cal-
culate Mc for the catalog based techniques (MAXC, GFT, MBS and EMR) to-
gether with uncertainty calculation using bootstrapping. This is available from
the CORSSA website including example scripts. The package contains plotting
of the FMD. The usage is described with in the scripts Samplescript.m and Sam-
pleScriptBootstrap.m.

The following techniques are also available in the R language in the Appendix of
this tutorial (Section 9): MAXC, GFT, MBS and EMR. The MBASS R algorithm
is published in Amorèse (2007).
There is yet no package available online for the BMC method (Section 7.3). Two R
programs (for optimized Mc mapping and for the Bayesian approach) are available
directly from the lead author of this tutorial (inquiries by e-mail).
For the Probability-based Magnitude of Completeness (PMC) method (Sections 5.2
and 7.4), the website http://completeness.usc.edu/ provides a time history of
results for the Southern California Seismic Network, the Italian National Seismic
Network and the Swiss Digital Seismic Network, downloadable in raster files. The
package QuakePy, available at https://quake.ethz.ch/quakepy/, contains the
PMC module (programs in Python). MATLAB programs are also available from
the authors of the published references.

8.2 Catalog Data

The catalog data used for the examples in this tutorial are available from the
CORSSA website.

Acknowledgements We are grateful to CORSSA Editor Jeanne Hardebeck and
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9 Appendix

Disclaimer: the following functions are R-Language versions of the ZMAP func-
tions, written in Matlab (see Wiemer (2001) and http://www.earthquake.ethz.

ch/software/zmap). These have been tested on various data sets and shown to work
properly. We however recommend to the user to contact us in case any glitch or any
more serious bug would be encountered. Some basic R programs are also provided
for plotting and bootstrap analysis - See also the CORSSA article by Naylor et al.
(2010) for more tools in R. The R algorithm for the MBASS technique is given by
Amorèse (2007).

# LIBRARIES

library(nlstools) #nlsfit() for emr() function

# FUNCTIONS

fmd <- function(mag,mbin){
mi <- seq(min(round(mag/mbin)*mbin), max(round(mag/mbin)*mbin), mbin)

nbm <- length(mi)

cumnbmag <- numeric(nbm)

nbmag <- numeric(nbm)

for(i in 1:nbm) cumnbmag[i] <- length(which(mag > mi[i]-mbin/2))

cumnbmagtmp <- c(cumnbmag,0)

nbmag <- abs(diff(cumnbmagtmp))

res <- list(m=mi, cum=cumnbmag, noncum=nbmag)

return(res)

}

#Maximum Curvature (MAXC) [e.g., Wiemer & Wyss, 2000]

maxc <- function(mag,mbin){
FMD <- fmd(mag,mbin)

Mc <- FMD$m[which(FMD$noncum == max(FMD$noncum))[1]]

return(list(Mc=Mc))

}

#Goodness-of-fit test (GFT) [Wiemer & Wyss, 2000]

gft <- function(mag,mbin){
FMD <- fmd(mag,mbin)

McBound <- maxc(mag,mbin)$Mc

Mco <- McBound-0.4+(seq(15)-1)/10

R <- numeric(15)

http://www.earthquake.ethz.ch/software/zmap
http://www.earthquake.ethz.ch/software/zmap
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for(i in 1:15){
indmag <- which(mag > Mco[i]-mbin/2)

b <- log10(exp(1))/(mean(mag[indmag])-(Mco[i]-mbin/2))

a <- log10(length(indmag))+b*Mco[i]

FMDcum_model <- 10^(a-b*FMD$m)

indmi <- which(FMD$m >= Mco[i])

R[i] <- sum(abs(FMD$cum[indmi]-FMDcum_model[indmi]))/sum(FMD$cum[indmi])*100

#in Wiemer&Wyss [2000]: 100-R

}
indGFT <- which(R <= 5) #95% confidence

if(length(indGFT) != 0){
Mc <- Mco[indGFT[1]]

best <- "95%"

} else{
indGFT <- which(R <= 10) #90% confidence

if(length(indGFT) != 0){
Mc <- Mco[indGFT[1]]

best <- "90%"

} else{
Mc <- McBound

best <- "MAXC"

}
}
return(list(Mc=Mc, best=best, Mco=Mco, R=R))

}

#Mc by b-val Stability (MBS) [Cao & Gao, 2002]

#Modification with Shi & Bolt [1982] uncertainty [Woesner & Wiemer, 2005]

mbs <- function(mag,mbin){
McBound <- maxc(mag,mbin)$Mc

Mco <- McBound-0.7+(seq(20)-1)/10

bi <- numeric(20); unc <- numeric(20)

for(i in 1:20){
indmag <- which(mag > Mco[i]-mbin/2)

nbev <- length(indmag)

bi[i] <- log10(exp(1))/(mean(mag[indmag])-(Mco[i]-mbin/2))

unc[i] <- 2.3*bi[i]^2*sqrt(sum((mag[indmag]-

mean(mag[indmag]))^2)/(nbev*(nbev-1)))

}
bave <- numeric(15)

www.corssa.org
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for(i in 1:15) bave[i] <- mean(bi[i:i+5])

dbi_old <- abs(diff(bi))

indMBS_old <- which(dbi_old <= 0.03)

dbi <- abs(bave[1:15]-bi[1:15])

indMBS <- which(dbi <= unc[1:15])

Mc <- Mco[indMBS[1]]

return(list(Mc=Mc, Mco=Mco, bi=bi, unc=unc, bave=bave))

}

#Entire Magnitude Range method (EMR) [Woesner & Wiemer, 2005]

emr <- function(mag,mbin){
FMD <- fmd(mag,mbin)

nbm <- length(FMD$m)

McMAXC <- maxc(mag,mbin)$Mc

mu <- abs(McMAXC/2); sig <- abs(McMAXC/4)

if(mu > 1)mu <- abs(McMAXC/10); sig <- abs(McMAXC/20)

McBound <- McMAXC

Mco <- McBound-0.3+(seq(9)-1)/10

params <- numeric(9*4); dim(params) <- c(9,4) #a, b, mu, sigma

prob <- numeric(9)

savedmodel <- numeric(9*nbm); dim(savedmodel) <- c(9,nbm)

for(i in 1:9){
indmag <- which(mag > Mco[i]-mbin/2)

nbev <- length(indmag)

b <- log10(exp(1))/(mean(mag[indmag])-(Mco[i]-mbin/2))

a <- log10(length(indmag))+b*Mco[i]

cumN <- 10^(a-b*FMD$m)

params[i,1] <- a; params[i,2] <- b

cumNtmp <- 10^(a-b*(max(FMD$m)+mbin))

cumNtmp <- c(cumN, cumNtmp)

N <- abs(diff(cumNtmp))

data <- data.frame(N=N, m=FMD$m, Nd=FMD$noncum)

indLow <- which(FMD$m < Mco[i]); indHigh <- which(FMD$m >= Mco[i])

dataTest <- data.frame(N=data$N[indLow], m=data$m[indLow], Nd=data$Nd[indLow])

dataTmp <- data.frame(N=data$N[indHigh], m=data$m[indHigh], Nd=data$Nd[indHigh])
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checkNo0 <- which(dataTest$Nd != 0)

dataTest <- data.frame(N=dataTest$N[checkNo0], m=dataTest$m[checkNo0],

Nd=dataTest$Nd[checkNo0])

#Nmax <- max(dataTmp$Nd)

Nmax <- max(dataTest$Nd)

#Nmax <- dataTest$Nd[length(dataTest$Nd)]

Mmintmp <- min(dataTest$m)

dataTest$Nd <- dataTest$Nd/Nmax

dataTest$m <- dataTest$m-Mmintmp

data4fit <- data.frame(N=dataTest$Nd, m=dataTest$m)

#non-linear least squares fit

nlsfit <- nls(N~pnorm(m, mean=mean, sd=sd), data=data4fit,

start=list(mean=mu, sd=sig), control=list(maxiter=100, warnOnly = TRUE))

params[i,3] <- coef(nlsfit)["mean"]; params[i,4] <- coef(nlsfit)["sd"]

dataTest$N <- pnorm(dataTest$m, mean=coef(nlsfit)["mean"],

sd=coef(nlsfit)["sd"])*Nmax

dataTest$m <- dataTest$m+Mmintmp

dataTest$Nd <- dataTest$Nd*Nmax

dataPred <- data.frame(N=c(dataTest$N, dataTmp$N), m=c(dataTest$m, dataTmp$m),

Nd=c(dataTest$Nd, dataTmp$Nd))

dataPred$N <- round(dataPred$N)

savedmodel[i,c(checkNo0,indHigh)] <- dataPred$N

#CHECK EMR METHOD#

#pdf(paste(wd,"plot_NonCumModel_",Mco[i],".pdf", sep=""))

#plot(dataPred$m, dataPred$Nd, pch=18, xlab="Magnitude",

ylab="Cumulative Number", log="y")

#points(dataPred$m, dataPred$N, pch=1)

#abline(v=Mco[i], lty="dashed")

#legend("topright", c("Data","EMR model"), cex=0.8, lty=c(0,0), pch=c(18,1))

#dev.off()

#write.table(dataPred, file=paste(wd, "file_NonCumModel_",Mco[i],

".txt", sep=""))

#Logarithm to the basis of 10 of Poisson probability density

probtmp <- numeric(nbm)

CheckNo0 <- which(dataPred$N != 0)

Pmodel <- dataPred$N[CheckNo0]; Pdata <- dataPred$Nd[CheckNo0]

www.corssa.org
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probtmp[CheckNo0] <- 1/log(10)*(-Pmodel+Pdata*log(Pmodel)-lgamma(Pdata+1))

prob[i] <- -sum(probtmp)

}
indbestfit <- which(prob == min(prob, na.rm=TRUE))

res <- list(Mc=Mco[indbestfit], a=params[indbestfit,1], b=params[indbestfit,2],

mu=params[indbestfit,3], sigma=params[indbestfit,4],

model=savedmodel[indbestfit,], Mco=Mco, prob=prob)

return(res)

}

# INPUT PARAMETERS

wd <- "/Path/WorkingDirectory/"

cat_file <- "SeismicityCatalog.txt"

mbin <- 0.1 #Magnitude bin

nbsample <- 200 #Bootstrapping

## READ CATALOG ##

#For a catalog with data listed in columns separated by space or tab

#(Longitude, Latitude, Magnitude, etc...)

#Other formats may require a different R function

cat <- read.table(paste(wd, cat_file, sep=""), header=TRUE)

mag <- cat$Magnitude

## COMPUTE Mc ##

Mc_bootstrap <- numeric(nbsample)

#select function: maxc(), gft(), mbs(), emr()

#For mbass(), see algorithm Amorese [2007]

for(i in 1:nbsample) Mc_bootstrap[i] <- maxc(sample(mag, replace=TRUE),mbin)$Mc

#when using emr(), the loop may break due to failure of nlsfit(),

#in this case use:

for(i in 1:nbsample) Mc_bootstrap[i] <-

as.numeric(try(emr(sample(mag, replace=TRUE),mbin)$Mc))

Mc_mean <- mean(Mc_bootstrap, na.rm=TRUE)

Mc_sd <- sd(Mc_bootstrap, na.rm=TRUE)

print(paste("Mc (mean): ", Mc_mean, sep=""))
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print(paste("Sigma0 (std. dev.): ", Mc_sd, sep=""))

## PLOT FMD ##

FMD <- fmd(mag,mbin)

pdf(paste(wd,"CORSSA_Mc_plot_FMD.pdf", sep=""))

plot(FMD$m, FMD$cum, log="y", xlab="Magnitude", ylab="Number of events",

main="Frequency-Magnitude Distribution")

points(FMD$m, FMD$noncum, pch=2)

abline(v=Mc_mean)

legend("topright", c("Cum. FMD", "Non Cum. FMD"), cex=0.8, pch=c(1, 2))

dev.off()
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