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Basic models of seismicity: Temporal models 3

Abstract In this and subsequent articles, we present an overview of some mod-
els of seismicity that have been developed to describe, analyze and forecast the
probabilities of earthquake occurrences. The models that we focus on are not only
instrumental in the understanding of seismicity patterns, but also important tools
for time-independent and time-dependent seismic hazard analysis. We intend to
provide a general and probabilistic framework for the occurrence of earthquakes.
In this article, we begin with a survey of simple, one-dimensional temporal models
such as the Poisson and renewal models. Despite their simplicity, they remain highly
relevant to studies of the recurrence of large earthquakes on individual faults, to the
debate about the existence of seismic gaps, and also to probabilistic seismic hazard
analysis. We then continue with more general temporal occurrence models such as
the stress-release model, the Omori-Utsu formula, and the ETAS (Epidemic Type
Aftershock Sequence) model.

1 Introduction

In this article, we present an overview of several temporal point-process models that
were well studied during the 1990’s and 2000’s. We cannot go through all the ex-
isting interesting models, and we only focus on some generic models, since most of
the complicated models are constructed on the basis of these elegant generic mod-
els. These models include the Poisson model, the renewal models, the Omori-Utsu
formula, the ETAS (Epidemic Type Aftershock Sequence) model, and the stress
release model. To address them systematically, we classify these models into the
following four classes: (1) 1D/temporal models, which include the stationary and
non-stationary Poisson model, the renewal model, the Omori-Utsu (Reseanberg-
Jones) model, temporal ETAS models and single-region stress release models; (2)
discrete multi-region models, including linked stress release models and self- and
mutually exciting models; (3) spatiotemporal models, including homogeneous and
non-homogeneous Poisson models, space-time ETAS models; and, (4) models with
auxiliary information, which incorporate information from observation or/and cal-
culation results of other physical variables. In this article, we only discuss models
from Class 1, i.e., temporal models that are formulated only based on the infor-
mation of the catalogs. Please see other papers in this series for basic models from
the 2nd and 3rd classes, and the CORSSA articles by Hainzl et al and Iwata (this
theme) for the 4th class of models.

To illustrate how to utilize these models for seismicity analysis, we give examples
that are extracted from various published papers. We encourage the reader to repeat
these examples and to apply similar analysis to their own datasets.

http://www.corssa.org/glossary/#Omori-Utsu_relation
http://www.corssa.org/glossary/#Omori-Utsu_relation
http://www.corssa.org/glossary/#epidemic_type_aftershock_sequence_(ETAS)
http://www.corssa.org/glossary/#stationary
http://www.corssa.org/glossary/#Poisson_distribution
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2 Basic mathematical concepts

Earthquakes are caused by the rapid energy release accompanying the movement
or fracture of faults in the crust or upper mantle of the earth, causing ground
shaking of a duration from seconds to several minutes. However, generally only point-
information is available for each earthquake, namely the origin time, hypocenter and
magnitude. If we compress the time axis of the seismograph to view all the records
of earthquakes in a large time scale, the waveforms of each earthquake become a
pulse. We treat earthquakes as points in time and space. Such idealization enables
us to study the earthquake process by using point process models.

Mathematically, a point process is a random object that takes value of a countable
subset in a given spatiotemporal space. Here we can simply regard a point process as
a type of stochastic model that defines probabilistic rules for the occurrence of points
(i.e., earthquakes) in time and/or space. As well as purely temporal point process
models, we consider in this article marked point processes that include earthquake
magnitudes. In a marked point process, a mark or size (e.g., magnitude) is assigned
to each point.

Denote a point process in time by N and a certain temporal location by t. We
assume in the following discussions that we have known observations up to time
t. The most important characteristic is the waiting time, say u, to the next event
from time t. We consider the following cumulative probability distribution function
of waiting time

Ft(u) = Pr{from t onwards, waiting time to next event ≤ u }, (1)

with corresponding probability density function (p.d.f.)

ft(u) du = Pr{from t onward, waiting time is between u and u+ du }, (2)

the survival function

St(u) = Pr{from t on, waiting time > u }
= Pr{no event occurs between t and t+ u}, (3)

and the hazard function

ht(u) du = Pr{next event occurs between t+ u and t+ u+ du

| it does not occur between t and t+ u.}. (4)

www.corssa.org
http://www.corssa.org/glossary/#origin_time
http://www.corssa.org/glossary/#hypocenter
http://www.corssa.org/glossary/#magnitude
http://www.corssa.org/glossary/#point_process
http://www.corssa.org/glossary/#random
http://www.corssa.org/glossary/#stochastic
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One can easily prove that these functions are related in the following ways:

St(u) = 1− Ft(u) =

∫ ∞
u

ft(s) ds = exp

[
−
∫ u

0

ht(s) ds

]
, (5)

ft(u) =
dFt
du

= −dSt
du

= ht(u) exp

[
−
∫ u

0

ht(s) ds

]
, (6)

ht(u) =
ft(u)

St(u)
= − d

du
[logSt(u)] = − d

du
[log(1− Ft(u))]. (7)

In the above equations, the first and second equality signs in each are obvious.
Here we only outline how to derive the third equality signs in each. Equation (7)
obtained from (4), i.e.,

ht(u) du =
Pr{next event occurs between t+ u and t+ u+ du }

Pr{the waiting time is greater than u.}

=
f(u) du

S(u)
= −d logS(u).

To obtain the exponential term in (5), replace u by x in the above equality and
integrate both sides with respect to x from 0 to u to get∫ u

0

ht(x) dx = −
∫ u

0

d logS(x) = log S(0)− logS(u) = − logS(u), (8)

i.e.,

S(u) = exp

[
−
∫ u

0

ht(x) dx

]
. (9)

The last equality sign in (6) can be proved by taking the derivative of the above
equation with respect to u.

In the above concepts, the hazard function ht is the key to understand our theory
because it has the nice property of additivity. Suppose that a point process N
consists of two independent sub-process, N1 and N2. Using the notation in (1) to
(7) for N and denoting the waiting time distribution function, the survival function

and the hazard function of the sub-processes by F
(i)
t , S

(i)
t and h

(i)
t , respectively, with

i = 1 or 2, respectively, for N1 or N2. Then, we can prove

Ft(u) = F
(1)
t (u) + F

(2)
t (u)− F (1)

t (u)F
(2)
t (u), (10)

ft(u) = f
(1)
t (u) + f

(2)
t (u)− f (1)

t (u)F
(2)
t (u)− F (1)

t (u) f
(2)
t (u), (11)

ht(u) =
ft(u)

1− Ft(u)
=

f
(1)
t (u)

1− F (1)
t (u)

+
f

(2)
t (u)

1− F (2)
t (u)

= h
(1)
t (u) + h

(2)
t (u). (12)
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Another property of the hazard function is the following: if there is no event
occurring between t and t + u and v ≥ u ≥ 0, then ht(v) = ht+u(v − u). This is
followed by conditioning on no event occuring in (t, t+ u], then, when x ≥ 0.

St+u(x) = Pr{no event occurs in (t+ u, t+ u+ x) | no event occurs in (t, t+ u]}

=
Pr{no event occurs in either (t+ u, t+ u+ x) or (t, t+ u]}

Pr{no event occurs in (t, t+ u]}

=
Pr{no event occurs in (t, t+ u+ x)}

Pr{no event occurs in (t, t+ u]}

=
St(u+ x)

St(u)
(13)

with x ≥ 0 and so

ht+u(x) =
d

dx
logSt+u(x) =

d

dx
logSt(u+ x) = ht(u+ x). (14)

If we set x = 0 in the above equation, we have ht(u) = ht+u(0) when no events occur
in (t, t + u], i.e., h collapses to a function of one variable. Thus, as a function of t,
ht(0) is identical to ht0(t− t0) from a time t0, until the occurrence of another event,
say t1, where ht(0) is identical to ht1(t− t1).

If an event occurs at t, then ht(0) has two possible explanations: one is the hazard
function at t − tprev from the occurrence time tprev of the last previous event, the
other is the hazard function at 0 from the event occurring at t. To distinguish them,
we use ht−(0) and ht+(0) for the first and the second explanations, respectively.
Conventionally, the first explanation is used for ht(0), i.e., ht(0) = ht−(0).

Example 1 If the distribution time from t is an exponential distribution, i.e.,

Ft(u) = 1− exp[−λu], and ft = λ exp[−λu], (15)

where λ is a positive constant, then

ht(u) = λ. (16)

This is the case of the Poisson process, which will be discussed in detail in next
section.

Since the function ht(0) plays a key role in our understanding of the theory of
point processes, it is worthwhile to give it a specific name. Nowadays, it is usually
named as the conditional intensity and denoted by λ(t). Researchers also frequently
write it as λ(t|Ht), where Ht represents the observation history up to time t but not
including t, since the value of λ(t) also can depend on what is in the observation
history before t, but not on what happens at t.

www.corssa.org
http://www.corssa.org/glossary/#conditional_intensity
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From the definition of the hazard function, we have

λ(t) dt = Pr{one or more events occur in [t, t+ dt) | Ht}. (17)

This is usually used as the definition of the conditional intensity. When the point
process N is simple, i.e., there is at most 1 event occurring at the same time location,
then Pr{N [t, t + dt) > 1} = o(dt). Using this relationship, λ(t) can be also defined
as follows:

E [N [t, t+ dt) | Ht] =
∞∑
n=0

nPr{N [t, t+ dt) = n | Ht}

≈ Pr{N [t, t+ dt) = 1 | Ht}+ o(dt)

≈ λ(t) dt+ o(dt). (18)

The conditional intensity has a natural form for the purpose of forecasting.
Given an observed dataset of a point process N , say {t1, t2, · · · , tn}, in a given

time interval [S, T ]. The likelihood function L is the joint probability density of
waiting times to each of these events, i.e.,the joint probability that the waiting time
from S is in the range (t1 − S, t1 − S + dt1) and the waiting time from t1 is in the
range (t2−t1, t2−t1 +dt2) and so on, with the final term being that the waiting time
from tn is greater than (T − tn). The probability each of these terms is conditional
on what has happened previously, so we can write the likelihood function as

L(N ;S, T ) dt1 dt2 · · · dtn

= Pr{The waiting time from S is in (t1 − S, t1 − S + dt1)}
×Pr{The waiting time from t1 is in (t2 − t1, t2 − t1 + dt2) | what happens before t1}
× · · ·
×Pr{The waiting time from tn is greater than T − tn | what happens before tn}

= fS(t1) dt1 × ft1(t2 − t1) dt2 × · · · × ftn−1(tn − tn−1) dtn × Stn(T − tn)

= hS(t1 − S) exp

[
−
∫ t1

S

hS(u− S) du

]
dt1

×
n−1∏
i=1

{
hti(ti+1 − ti) exp

[
−
∫ ti+1

ti

hti(u− ti) du

]
dti

}
exp

[
−
∫ T

tn

htn(u− tn) du

]
(∵ (6))

=

[
n∏
i=1

hti(0) dti

]
exp

[
−
∫ T

S

hu(0) du

]
=

[
n∏
i=1

λ(ti) dti

]
exp

[
−
∫ T

S

λ(u) du

]
. (19)

We usually write the above formula as its logarithm, i.e.,

logL(N ;S, T ) =
n∑
i=1

log λ(ti)−
∫ T

S

λ(u) du. (20)
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A direct use of the likelihood function is for parameter estimation: when the model
involves some unknown regular parameters, say θ, we can estimate θ through max-
imizing the likelihood, i.e., the MLE (maximum likelihood estimate) is

θ̂ = argθ maxL(N ;S, T ; θ). (21)

Given several models fit to the same dataset, the optimal one can be selected by
using the Akaike Information Criterion (AIC, see Akaike 1974). The statistic

AIC = −2 max
θ

logL(θ) + 2kp (22)

is computed for each of the models fit to the data, where kp is the total number of
estimated parameters for a given model. Comparing models with different numbers
of parameters, the addition of the quantity 2kp roughly compensates for the addi-
tional flexibility that the extra parameters provide. The model with the lowest AIC
value is selected as the optimal choice for forward prediction purposes.

3 Long-term temporal models

In this section, we present the one-dimensional temporal models for long-term earth-
quake forecasting, including Poisson models, renewal models and stress release mod-
els. Roughly speaking, these models are intended to be used at time scales of 10 to
100 years or even longer.

3.1 Stationary Poisson models

We suppose that the readers of this section already have some related background
knowledge of the Poisson process; if not, the readers are referred to Introduction to
Probability Models (Ross 2003).

The Poisson process is named after the French mathematician Siméon-Denis
Poisson (1871-1840). The process is also known as the model of complete random-
ness. Thus, it naturally serves as the null model in many hypothesis tests to clarify
whether systematic structure is contained in the observations. For example, Gard-
ner and Knopoff (1974) discussed whether the seismicity in California is Poissonian
or not after the aftershock clusters are removed. Furthermore, the stationary Pois-
son process forms the basis of most of today’s probabilistic seismic hazard analysis
(Cornell 1968).

Let N(a, b) be the number of events in a point process N that fall in the time
interval (a, b). A point process is called a stationary Poisson process if the system
has the following characteristics:

www.corssa.org
http://www.corssa.org/glossary/#maximum_likelihood
http://www.corssa.org/glossary/#Akaike_information_criterion_(AIC)
http://www.corssa.org/glossary/#aftershock
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a) Independent increments: The numbers of events occurring in two disjoint time
intervals are independent of each other. That is,

Pr{N(a, b) = m,N(c, d) = n} = Pr{N(a, b) = m}Pr{N(c, d) = n} (23)

for all non-negative integers m, n, and any interval pairs (a, b) ∩ (c, d) = ∅.
b) Stationarity: The probability distribution of the number of events falling in a

time interval only depends on the length of the time interval.
c) Simplicity: There is never an occasion that two or more events occur simultane-

ously.

It can be shown that a stationary Poisson process has the following properties:

a) The number of events occurring in an interval of length S has a Poisson distri-
bution, i.e.,

Pr{N(a, a+ S) = n} =
λnSn

n!
e−λS, (24)

where λ is the long term average of the number of events in an interval of unit
length.

b) Given a fixed time, the forward occurrence time tf (time to next event) and the
backward occurrence time tb (time back to the previous event) have the same
exponential distribution as the waiting time τ between two consecutive events,
i.e.,

Pr{tf < x} = Pr{tb < x} = Pr{τ < x} = 1− e−λx. (25)

c) The mean and the variance of the number of observations are the same:

E [N(a, b)] = λ(b− a), Var [N(a, b)] = λ(b− a).

d) Binomial distribution. Given that n is the total number of events occurring
in the interval [0, T ], then the number of events in [0, S], where S < T , is a
non-negative integer-valued random variable from a binomial distribution with
parameters (n, S/T ), i.e.,

Pr{N [0, S] = k | N [0, T ] = n} =

(
n
k

)(
S

T

)k (
1− S

T

)n−k
(26)

e) Uniform distribution: Given that at least one event occurs in [0, T ], then the
location of an arbitrary event is uniformly distributed in [0, T ].

f) Beta distribution: Given that there are a total of n events occurring in [0, 1],
n ≥ 1, the location t(k) of the kth event (k < n), from the left to the right, has a
beta distribution, i.e.,

Pr{t(k) ∈ (x, x+ dx) | N [0, 1] = n} =
dx

B(k, n− k)
xk−1(1− x)n−k−1, (27)

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt is the beta function.

http://www.corssa.org/glossary/#mean_(average)
http://www.corssa.org/glossary/#mean_(average)
http://www.corssa.org/glossary/#variance
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Conditional intensity Recall the definition of the conditional intensity function of a
point process, which is defined by

λ(t)dt = Pr {N [t, t+ dt) = 1 | Ht} . (28)

For the stationary Poisson processes with rate λ, the right-hand side is λ dt exp[−dt]+
o(dt), i.e., λ(t) = λ. This is why we use λ to denote both the rate of the Poisson
process and the conditional intensity in the case of more general point processes.

Likelihood functions and maximum likelihood estimates of the Poisson process Sup-
pose that all observations of a realization of a Poisson process with a rate of λ on
a time interval [S, T ] is {t1, t2, · · · , tn}, where S ≤ t1 < t2 < · · · < tn < T . The
likelihood of the observation is

L[S, T ;λ] = λne−λ(T−S), (29)

and the logarithm of the likelihood function is

logL(S, T ;λ) = n log λ− λ(T − S). (30)

Usually, the rate λ is unknown. We can estimate it through maximizing the likeli-
hood function, i.e., the maximum likelihood estimate (MLE) of λ is

λ̂ = argλ maxL(S, T ;λ) (31)

Taking the derivative of (30) and setting it to zero to obtain a maximum, we have

∂

∂λ
logL(S, T ;λ)

∣∣∣∣
λ=λ̂

= 0, (32)

which yields
λ̂ = n/(T − S), (33)

which is simply the average rate of events in the interval [S, T ].

3.2 Non-stationary Poisson models

A point process is a non-stationary Poisson process if it satisfies the independent
increments and simplicity conditions, but violates the stationarity condition. Con-
sequently, the Poisson process has a rate that is a function of time, denoted by
λ(t).

With the definition Λ(t) =
∫ t

0
λ(x) dx and Λ(t+s) =

∫ t+s
0

λ(x) dx, the probability
of observing n events in the interval [t, t+ s) is

Pr{N [t, t+ s) = n} =
e−(Λ(t+s)−Λ(t))[Λ(t+ s)− Λ(t)]n

n!
.

www.corssa.org
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That is, N [t, t+ s) is Poisson distributed with expectation value
∫ t+s
t

λ(u) du where
λ(t) is the time dependent intensity. Also, given an event that falls in [S, T ], the prob-

ability density of its location is proportional to λ(·) on [S, T ], i.e., λ(t)/
∫ T
S
λ(u) du.

Likelihoods and maximum likelihood estimates of non-stationary Poisson processes
Suppose that the observation of a realization of a non-stationary Poisson process
with a rate of λ(t) on a time interval [S, T ] is {t1, t2, · · · , tn}, where S ≤ t1 < t2 <
· · · < tn < T . In a similar way as for the stationary Poisson model, the likelihood
of the observations is

L(S, T ;λ) = e−
∫ T
S λ(u) du

∏
i

λ(ti). (34)

The corresponding logarithm of the likelihood function is

logL(S, T ;λ) =
∑
i

log λ(ti)−
∫ T

S

λ(u) du. (35)

There are relative few applications of non-stationary Poisson models in seismol-
ogy. This type of model is usually used as a natural alternative to the null stationary
Poisson model when an apparent trend or seasonality is visible in the data. Some ex-
amples of non-stationary Poisson models are the exponential trend model in Zheng
and Vere-Jones (1994) and the polynomial trend models and the seasonality models
in Ogata and Katsura (2004) and Ma and Vere-Jones (1997).

3.3 Renewal/recurrence models

Renewal models are simple extensions of the Poisson model. One of their uses is
to model the characteristic recurrence of earthquakes on a particular fault or in
a particular region. This class of models is widely used in seismicity and seismic
hazard analysis. For example, Field (2007) summarized how the Working Group on
California Earthquake Probabilities (WGCEP) estimates the recurrence probabili-
ties of large earthquakes on major fault segments using various recurrence models
to produce the official California seismic hazard map. These models are sometimes
justified by the elastic rebound theory proposed by Reid (1910). According to his
theory, large earthquakes release the elastic strain that has built up since the last
large earthquake. Some seismologists deduce that the longer it has been since the
last earthquake, the more probable is an imminent event (e.g. Nishenko and Buland
1987; Nishenko 1991; Sykes and Menke 2006), while others contend that the data
contradict this view (e.g. Davis et al. 1989; Kagan and Jackson 1995). Renewal
models are often used to quantitatively demonstrate whether earthquakes occur
temporally in clusters or quasi-periodically.

http://www.corssa.org/glossary/#elastic_rebound
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A renewal process is a generalization of the Poisson process. In essence, the
Poisson process has independent identically distributed waiting times that are ex-
ponentially distributed before the occurrence of the next event. A renewal process
is defined as a point process with the waiting times having a more general distri-
bution, which is not necessarily exponential distribution. In this section, we denote
the density function of the waiting times by f(·), which is also usually called the
renewal density.

The conditional intensity of the renewal process can be derived as follows. Recall
that the time interval between any two adjacent events is independent from other
intervals. This means that the occurrence of the next event depends only on the time
of the last event but not on the full history. Thus, from Section 1, the conditional
intensity function is the same as the hazard function, i.e.,

λ(t) =
f(t− tN(t−))

1− F (t− tN(t−))
, (36)

where tN(t−) is the occurrence time of the last event before t and F is the cumulative
probability function of f .

The following probability functions are often chosen as the the renewal densities.

1. The gamma density

f(u; k, θ) = uk−1 e−u/θ

θk Γ (k)
, for u ≥ 0 and k, θ > 0 , (37)

with a hazard function

h(u; k, θ) =
uk−1 e−

u
θ

θkΓu
θ
(k, u

θ
)
, (38)

where θ is called the scale parameter, k the shape parameter, and Γ and Γα
are the gamma and the incomplete gamma functions, respectively, defined by
Γ (x) =

∫∞
0
tx−1e−t dt and Γα(x) =

∫∞
α
tx−1e−t dt.

2. The log-normal density function is

f(u;µ, σ) =
1

uσ
√

2π
e−

(ln(u)−µ)2

2σ2 , for u ≥ 0, (39)

with a hazard function

h(u;µ, σ) =
2

uσ
√

2π

e−
(ln(u)−µ)2

2σ2

1− erf
[

ln(u)−µ
σ
√

2

] , (40)

www.corssa.org
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where µ and σ are the mean and standard deviation of the variable’s natural
logarithm1. and erf is the error function.

3. The Weibull distribution is one of the most widely used lifetime distributions
in reliability engineering. It is named after Waloddi Weibull who described it
in detail in 1951 (Weibull 1951). The probability density function of a Weibull
random variable X is

f(u;µ, k) =

 k
µ

(
u
µ

)k−1

e−(u/µ)k u ≥ 0,

0 u < 0,
(41)

where k > 0 is the shape parameter and µ > 0 is the scale parameter of the dis-
tribution. Its cumulative distribution function is a stretched exponential function

F (u;µ, k) = 1− e−(u/µ)k

and its hazard function is

h(u; k, µ, k) =
k

µ

(
u

µ

)k−1

.

4. Kagan and Knopoff (1987) used the inverse Gaussian distribution to model the
evolution of stress as a random walk with a tectonic drift. Later on, a partic-
ularly interesting renewal model, called the Brownian passage-time model, was
introduced by Matthews et al. (2002) and Ellsworth et al. (1999) based on the
properties of the Brownian relaxation oscillator (BRO). In this conceptual model
of Matthews et al. (2002), the loading of the system has two components: (1) a
constant-rate loading component, λt, and (2) a random component, ε(t) = σW (t),
that is defined as a Brownian motion (where W is a standard Brownian motion
and σ is a nonnegative scale parameter). The Brownian perturbation process for
the state variable X(t) (see Figure 2 in Matthews et al. (2002)) is defined as:

X(t) = λt+ σW (t).

An event will occur when X(t) ≥ Xf ; event times are seen as “first passage”
or “hitting” times of Brownian motion with drift. The BRO are a family of
stochastic renewal processes defined by four parameters: the drift or mean loading
(λ), the perturbation rate (σ2), the ground state (X0), and the failure state
(Xf ). On the other hand, the recurrence properties of the BRO (response times)
are described by a Brownian passage-time distribution which is characterized
by two parameters: (1) the mean time or period between events, (µ), and (2)

1 If X is a normal random variable with mean µ and variance σ2, then Y = expX has a log-normal distribution

with a density of (39).

http://www.corssa.org/glossary/#standard_deviation
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the aperiodicity of the mean time, α, which is equivalent to the coefficient of
variation (defined in as the ratio of the variance to the mean occurrence time).
The probability density for the Brownian passage-time (BPT) model is given by:

f(t;µ, α) =
( µ

2πα2t3

) 1
2

exp

{
−(t− µ)2

2α2µt

}
, t ≥ 0 (42)

with a cumulative probability function

F (t;µ, α) = Φ

(
t− µ
α
√
µx

)
+ exp

(
2

α2

)
Φ

(
− t+ µ

α
√
µx

)
, (43)

where Φ is the cumulative probability distribution function of a standard normal
random variable, i.e., F is the inverse Gaussian or Wald distribution.

Forward recurrence time In practice, we usually do not start our observation at the
occurrence of an event. Then we are interested in the distribution of waiting times
until the next event starting from this starting time, i.e., the forward recurrence
time from an arbitrary time. This problem is equivalent to finding the distribution
of the distance between an arbitrary point to the next event in the time line, and
can be solved in three steps.

1. Assume that the length of each inter-event interval ∆ has a density f with finite
mean µ0, i.e.,

∫∞
0
u f(u) du = µ0.

2. The arbitrary time point falls in each inter-event interval ∆ with a probability
proportional to its length. That is to say, this arbitrary time is uniformly dis-
tributed on the time axis and has more chances to fall in larger intervals; or,
Pr{Arbitrary point falls in ∆ | ∆ ∈ [z, z + dz]} ∝ z.

3. From 2, given the length ∆ = z of the inter-event interval that the arbitrary time
falls in, the probability that the forward recurrence time X is less than t is 1 if
z < t, or t/z if z ≥ t. In other words, the probability that the forward recurrence
time X is greater than t is 0 if z < t, or (z − t)/z if z ≥ t. In summary,

Pr{X ≥ t} =

∫ ∞
t

[
Pr{Arbitrary point falls in ∆ | ∆ ∈ [z, z + dz]}

× Pr{∆ ∈ [z, z + dz]} × Pr{X > t | ∆ ∈ [z, z + dz)}
]

∝
∫ ∞
t

z f(z)
(z − t)
z

dz

=

∫ ∞
t

(z − t)f(z) dz

= µc(t)− t[1− F (t)] (44)
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where

µc(t) =

∫ ∞
t

z f(z) dz.

Similarly, it can be shown that

Pr{X < t} ∝ t[1− F (t)] + µ(t) (45)

where

µ(t) =

∫ t

0

z f(z) dz.

We find the normalizing factor in (44) by using

1 = Pr{X <∞} = Pr{X ≥ 0}, (46)

which gives

Pr{X < t} =
t[1− F (t)]

µ0

+
µ(t)

µ0

(47)

and

Pr{X ≥ t} =
µc(t)

µ0

− t [1− F (t)]

µ0

, (48)

where µ0 = E∆ =
∫∞

0
z f(z) dz.

It is easy to see that the phrase “the forward recurrence time” can be replaced
by “the backward recurrence time” in the above discussion. That is to say, the
backward recurrence time Y has the same distribution as the forward distribution
function. The density function wf of the forward recurrence times is obtained by
taking the derivative of (47), i.e.,

wf (t) =
1− F (t)

µ0

, (49)

with corresponding hazard function

hf (t) =
wf (t)

Pr{X > t}
=

1− F (t)

µc(t)− t[1− F (t)]
. (50)
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Table 1 Historical Earthquakes at Nankai Trough (DATA FILE: example2.data)

Occurrence times Years

t1 684

t2 887

t3 1099
t4 1233

t5 1361
t6 1498

t7 1605

t8 1707
t9 1854

t10 1946

Table 2 Results from fitting renewal models to the Nankai Trough data

Model MLE logL AIC

Poisson λ = 7.092× 10−3 -59.488 120.975

Gamma k = 7.768, θ = 16.865 -54.156 112.312
log-normal µ = 4.813, σ = 0.365 -54.580 113.160

Weibull k = 2.886, µ = 144.849 -55.176 114.351
BPT µ = 123.881, α = 0.419 -55.978 113.954

Likelihood function Suppose that the realization of a renewal process is {t1, t2, · · · , tn}
in [0, T ], and we do not know what happens before time 0. The likelihood function
can be written as

L(0, T ; ·) = wf (t1)×
n∏
i=2

f(ti − ti−1)× F (T − tn). (51)

Another form of the likelihood is through the conditional intensity function,

logL(0, T ; ·) =
∑

i: ti∈[0,T ]

log λ(ti)−
∫ T

0

λ(u) du. (52)

It can be shown that both forms are equivalent.

Example 2 Table 1 [Data file: example2.data] lists 10 great earthquakes of M8+
that have occurred in the Nankai Trough south of Japan since 600 A.D., taken from
Table 10.5 in Utsu (1999). Ogata (2002) analyzed this data set by using recurrence
models and Bayesian methods to evaluate the uncertainties in the estimated occur-
rence times. Here, as a simple illustration, we fit the Poisson and the four renewal
models discussed in this section. The estimated parameters and the correspond-
ing likelihood and AIC scores are listed in Table 2, indicating that, in this simple
example, the Gamma model fits the data the best.

www.corssa.org
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Among the models mentioned in this section, the BPT model has become the
most popular one and has been used in obtaining some interesting results (see, e.g.,
Ogata 2002 and Nomura et al. 2011). However, there is no clear evidence showing
that one model is superior to the others. This might be caused by the relatively
large standard errors of the parameter estimates that are due to very few data
points in the historical catalogs. Another reason may due to the nature of renewal
processes (e.g., MacFadden and Weissblum 1965; Daley and Vere-Jones 2003, Pages
77–79): The superposition of independent nontrivial renewal processes does not
result in a renewal process unless all of the superposed processes are simply Poisson.
This property requires that the renewal process is applied to a fault system that
is relatively disjoint in behavior from the surrounding environment, or is loaded by
a constant tectonic stressing rate. However, the identification of such fault systems
seems technically difficult in practice.

3.4 Stress release models

Based on the elastic rebound theory (Reid 1910), the stress release model was intro-
duced in a series of papers by Vere-Jones and others (see, e.g., Zheng and Vere-Jones
1991, 1994). It was extended to the linked stress release model by Shi et al. (1998),
Liu et al. (1998), Lu et al. (1999), Lu and Vere-Jones (2000), and Bebbington and
Harte (2001, 2003). This model assumes that the stress level in a certain region
is gradually built up, linearly with time by tectonic movements, and drops down
suddenly coinciding with earthquakes, i.e., the stress level at t, X(t), can be written
as

X(t) = X(0) + ρt− S(t), (53)

where X(0) is the initial stress level, ρ is the constant loading rate from the tectonic
movements, and S(t) is the accumulated stress release from earthquakes in the
period [0, t), namely

S(t) =
∑
i: ti<t

si . (54)

It is assumed that the stress release related to individual earthquakes scales with
the magnitude mi according to

si = 100.75mi , (55)

which is hinted from the Benioff strain. The conditional intensity is a monotonically
increasing function of the stress level, usually chosen as

λ(t) = Ψ(X) = eγX = exp[γ(X(0) + ρt− S(t))] = exp[a+ bt− c S(t)], (56)
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where γ is a single parameter representing the strength and heterogeneity of the
regional crust, and a = γ X(0), b = ργ, and c = γ are the final model parame-
ters. The assumption of an exponential distribution is in agreement with laboratory
experiments of stress corrosion where the mean waiting time until fracture can be
approximated by an exponential function of negative applied stress (Scholz 2002).

The amount of stress si released by an earthquake has a distribution with a
density function of ξ(s) and cumulative probability function Ξ(s), which is, for
simplification, assumed to be independent from the stress level. That is to say, the
full model has a conditional intensity function in the form of

λ(t, s) = Ψ [X(t)] ξ(s). (57)

Given the observations {(ti, si) : i = 1, 2, · · · , n} in a time period [T1, T2], the log-
likelihood function for the full model is

logL(T1, T2; ·) =
n∑
i=1

log λi(ti, si)−
∫ T2

T1

∫ ∞
0

λ(u, v) dv du

=
n∑
i=1

log Ψ(X(ti))−
∫ T2

T1

Ψ(X(u)) du+
n∑
i=1

log ξ(si). (58)

In the above equation, the first two terms are from the usual likelihood for pure
temporal processes, and the third term represents the joint distribution of stress
reductions caused by the earthquakes.

Usually, we consider the following three types of distributions for S: the Pareto,
the truncated Pareto and the tapered Pareto distributions:

1. The Pareto distribution of S corresponds to the case where the magnitude dis-
tribution follows the Gutenberg-Richter magnitude-frequency relation, i.e., the
exponential distribution. It has a probability density function

ξ(s) =
k − 1

S0

(
s

S0

)−k
; s ≥ S0, k > 1, (59)

where k is linked with the Gutenberg-Richter b-value by k = 4
3
b+ 1.

2. The truncated Pareto distribution of s corresponds to the case where the magni-
tude distribution follows the truncated Gutenberg-Richter magnitude-frequency
relation. It has a probability density function

ξ(s) =
k − 1

S0

[
1−

(
Su
S0

)1−k
] ( s

S0

)−k
, S0 ≤ s ≤ Su, (60)

where Su and S0 are the upper and lower thresholds, respectively.

www.corssa.org
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3. The tapered Pareto (or Kagan) distribution (see, Vere-Jones et al. 2001; Kagan
and Schoenberg 2001) has a cumulative distribution function

Ξ(s) = 1−
( s
S 0

)−k+1

exp

(
S0 − s
Sc

)
, S0 ≤ s <∞, (61)

and a density

ξ(s) =

(
k−1

s
+

1

Sc

)(
s

S0

)−k+1

exp

(
S0 − s
Sc

)
, S0 ≤ s <∞, (62)

where Sc is a parameter governing the strength of the exponential taper affecting
frequency of large events.

All three distributions are illustrated in Fig. 1.

The magnitude-frequency distribution of earthquake is well described by the
Gutenberg-Richter magnitude-frequency relation (Gutenberg and Richter 1944),
which takes the form of an exponential distribution, i.e.,

Pr{magnitude > m} = 10−b(m−mc), m ≥ mc, (63)

where b is the so-called Gutenberg-Richter b-value. To reduce the possibility of
extremely large earthquakes in simulation, the following truncated form is also
often adopted:

Pr{magnitude > m} =

{
10−b(m−mc) = e−β(m−mc), if mc ≤ m ≤Mmax,

0 otherwise,

where Mmax is the upper bound of magnitudes.

Example 3 The following example is taken from Zheng and Vere-Jones (1994) where
the stress release model was fit to the historical catalog from North China during
the period from 1480 to 1992. Table 3 (Data file example3.data) lists this historical
catalog from North China, Figure 2 shows the division of subregions, and Table
4 gives the corresponding results. Figure 3 shows the temporal variations of the
conditional intensity functions in each subregion.

4 Temporal clustering models

On short time scales, seismicity has been shown to be clustered. The terms foreshock,
main shock, aftershock, and earthquake swarm are concepts related the clustering of

http://www.corssa.org/glossary/#historical_catalog
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Fig. 1 Probability density functions ξ(s) of the Pareto, the truncated Pareto, and the tapered Pareto distribution.

Here we take k = 7/3(b = 1), Sc = 104S0, and Su = 103.5S0.

Fig. 2 Subregions and earthquake locations for the North China dataset [from Zheng and Vere-Jones (1994)].

the earthquake events. They are often used loosely in the many studies on seismicity.
However, a precise definition of each is generally not agreed, and indeed, it is often
difficult to correctly label observed events prospectively as they occur.

Short-term statistical seismicity models developed in the last century, including
the Omori-Utsu formula, the multiple Omori-Utsu formula, and the epidemic-type

www.corssa.org


Basic models of seismicity: Temporal models 21

Table 3 DATA FILE: example3.data Historical large earthquake from north China, 1480-1996, reprinted from
Zheng and Vere-Jones (1994).

Date Lat. Long. Mag. Reg. Date Lat. Long. Mag. Reg.

1484.01.29 40.40 116.10 6.70 W1 1487.08.10 34.30 108.90 6.20 E2

1501.01.19 34.80 110.10 7.00 E2 1502.10.17 35.70 115.30 6.50 W1
1536.10.22 39.60 116.80 6.00 W1 1548.09.13 38.00 121.00 7.00 W2

1556.01.23 34.50 109.70 8.00 E2 1561.07.25 37.50 106.20 7.20 E1

1568.04.25 34.40 109.00 6.70 E2 1568.05.15 39.00 119.00 6.00 W2
1573.01.10 34.40 104.10 6.70 E1 1587.04.10 35.20 113.80 6.00 W1

1597.10.06 38.50 120.00 7.00 W2 1604.10.25 34.20 105.00 6.00 E1
1614.10.23 37.20 112.50 6.50 E2 1618.05.20 37.00 111.90 6.50 E2

1618.11.16 39.80 114.50 6.50 W1 1622.03.18 35.50 116.00 6.00 W1

1622.10.25 36.50 106.30 7.00 E1 1624.02.10 32.40 119.50 6.00 W2
1624.04.17 39.80 118.80 6.20 W1 1624.07.04 35.40 105.90 6.00 E1

1626.06.28 39.40 114.20 7.00 W1 1627.02.15 37.50 105.50 6.00 E1

1634.01.- 34.10 105.30 6.00 E1 1642.06.30 35.10 111.10 6.00 E2
1654.07.21 34.30 105.50 8.00 E1 1658.02.03 39.40 115.70 6.00 W1

1665.04.16 39.90 116.60 6.50 W1 1668.07.25 35.30 118.60 8.60 W2

1679.09.02 40.00 117.00 8.00 W1 1683.11.22 38.70 112.70 7.00 E2
1695.05.18 36.00 111.50 8.00 E2 1704.09.28 34.90 106.80 6.00 E1

1709.10.14 37.40 105.30 7.50 E1 1718.06.29 35.00 105.20 7.50 E1

1720.07.12 40.40 115.50 6.70 W1 1730.09.30 40.00 116.20 6.50 W1
1739.01.03 38.80 106.50 8.00 E1 1815.10.23 34.80 111.20 6.70 E2

1820.08.03 34.10 113.90 6.00 W1 1829.11.19 36.60 118.50 6.00 W2
1830.06.12 36.40 114.20 7.50 W1 1831.09.28 32.80 116.80 6.20 W2

1852.05.26 37.50 105.20 6.00 E1 1861.07.19 39.70 121.70 6.00 W2

1879.07.01 33.20 104.70 8.00 E1 1882.12.02 38.10 115.50 6.00 W1
1885.01.14 34.50 105.70 6.00 E1 1888.06.13 38.50 119.00 7.50 W2

1888.11.02 37.10 104.20 6.20 E1 1920.12.06 36.70 104.90 8.50 E1

1922.09.29 39.20 120.50 6.50 W2 1937.08.01 35.40 115.10 7.00 W1
1945.09.23 39.50 119.00 6.20 W1 1966.03.22 37.50 115.10 7.20 W1

1967.03.27 38.50 116.50 6.30 W1 1969.07.18 38.20 119.40 7.40 W2

1975.02.04 40.70 122.80 7.30 W2 1976.04.06 40.20 111.10 6.20 E2
1976.07.28 39.40 118.00 7.80 W1 1976.09.23 39.90 106.40 6.20 E1

1979.08.25 41.20 108.10 6.00 E1 1989.10.18 40.00 113.70 6.00 E2

Table 4 Results from fitting the stress release model to the historical earthquakes from each of the four subregions

in North China. N represents the number of events in each subregion.

a b c logL (SRM) logL (Poisson) ∆AIC N

E1 -5.397 0.0209 0.571 -52.04 -56.76 -5.44 11
E2 -3.900 0.0176 0.880 -83.34 -87.58 -4.48 22

W1 -2.764 0.0035 1.731 -50.36 -52.99 -1.24 11

W2 -5.152 0.0238 0.410 -91.97 -77.84 -7.75 18

aftershock sequence (ETAS) model, all emphasize the evolutionary nature of a de-
veloping earthquake cluster. In this section, we give an introduction to these models.
The models described in this section do not have a spatial component. Hence, there
is an implicit assumption that the spatial area is sufficiently small so that any given
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Fig. 3 Conditional intensity curves for the four subregions of the North China dataset [from Zheng and Vere-Jones
(1994)].

event can conceivably interact with all following events, regardless of their spatial
locations.

4.1 The Omori-Utsu formula

The Omori-Utsu formula describes the decay of the aftershock frequency with time
after a mainshock as an inverse power law. When Omori (1894) was studying the
aftershocks of the 1891 Ms8.0 Nobi earthquake, he first tried to use an exponential
decay function to fit the data, but unsatisfactory results were obtained. Then he
found that the number of aftershocks occurring each day can be well described by
the equation

n(t) = K(t+ c)−1, (64)

www.corssa.org
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where t is the time from the occurrence of the mainshock, K and c are constants.
Utsu (1957) postulated that the decay of the aftershock numbers could vary, and

showed that
n(t) = K(t+ c)−p (65)

yields better fitting results. Equation (65) is now called the modified Omori formula
or Omori-Utsu formula.

The Omori-Utsu formula has been used extensively to analyze, model and forecast
aftershock activity. Utsu et al. (1995) reviewed the values of p for more than 200
aftershock sequences and found that it ranges between 0.6 and 2.5 with a median
of 1.1. He found no clear relationship between estimates of p-values and mainshock
magnitudes.

In the context of statistical seismology, we usually make use of (65) in the form
of a conditional intensity function, given by

λ(t) =
K

(t+ c)p
. (66)

When the magnitude distribution of the aftershocks is also considered, the condi-
tional intensity for the full model is written as

λ(t,m) =
K s(m)

(t+ c)p
, (67)

where s(m) is the magnitude probability density function and usually takes the form
of the Gutenberg-Richter magnitude-frequency relation. This model has been used
by Reasenberg and Jones for forecasting aftershock activity (see, e.g., Reasenberg
and Jones 1989, 1994). Therefore, some researchers also call (67) the Reasenberg-
Jones model.

Likelihood of the single and multiple Omori-Utsu formulas Suppose that the oc-
currence time of the mainshock is 0. As discussed in Section 2, given observations
N = {(ti,mi) : i = 1, 2, · · · , n} in the the time interval [S, T ], T > S ≥ 0, the
log-likelihood function for the model of the Omori-Utsu formula can be written in
the form

logL(N ;S, T ) =
∑

i: ti∈[S,T ]

log λ(ti,mi)−
∫
M

∫ T

S

λ(u,m) du dm

=
∑

i: ti∈[S,T ]

log λ(ti)−
∫ T

S

λ(u) du+
∑

i: ti∈[S,T ]

log s(mi), (68)

where the first two terms on the righthand side represent the contribution to the
likelihood from the occurrence times and the third term represents the contribution

http://www.corssa.org/glossary/#median
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Fig. 4 A plot of magnitudes against indices of the aftershocks of the 2008 Wenchuan earthquake in China. The

red line indicates the estimation of the completeness magnitude.

from the magnitudes. The parameters in the Omori-Utsu formula can be estimated
from maximizing the temporal part of the likelihood (first two terms in the righthand
side)

∑
i: ti∈[S,T ]

log λ(ti)−
∫ T

S

λ(u) du

= N logK − p
∑

i: ti∈[S,T ]

log(ti + c)− K

p− 1

[
(S + c)1−p − (T + c)1−p] . (69)

Example 4 The aftershock sequence of the 2008MS8.0 Wenchuan earthquake, China:
Table 5 [Data file example4.data] lists the mainshock and the aftershocks (MS ≥ 4.0)
of the Wenchuan earthquake (2009-5-12, Ms8.0), occurring within 25 days after the
mainshock. Since aftershocks immediately after a large mainshock are usually miss-
ing due to detection and recording problems (see, e.g., Kagan and Jackson 1995),
the Omori-Utsu formula should only be fit to a period where the records in the
considered magnitude range are complete. A simple and direct way to detect this
starting point is by plotting each event magnitude against its catalog sequential
number of event. As shown in Figure 4, we arbitrarily take T0 = 0.3 days, corre-
sponding to the occurrence time of the 40th event. The estimated parameters from
fitting the Omori-Utsu formula are K̂ = 45.228, ĉ = 0.129 days, and p̂ = 1.107; with
logL = 270.575.
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Fig. 5 Comparison of the observed and modeled cumulative number of M ≥ 4-aftershocks of the Wenchuan

earthquake: observation (black) and Omori-Utsu formula (red).

Multiple Omori-Utsu formula It is often observed that not only mainshocks trigger
aftershocks, but also large aftershocks may trigger their own aftershocks. To model
such phenomena, Utsu (1970) used the following model

λ(t) = K/(t− t0 + c)−p +

NT∑
i=1

KiH(t− ti)
(t− ti + ci)−pi

, (70)

where t0 is the occurrence time of the mainshock, ti, i = 1, . . . NT , define the oc-
currence times of the triggering aftershocks and H is the Heaviside function. The
likelihood for the multiple Omori-Utsu formula is sightly more complicated than for
the simple Omori-Ustu formula, but can be written in a similar way.

Example 5 This example is on the 1965 Rat Island earthquake of MW8.7 and its
aftershocks, and is taken from Ogata and Shimazaki (1984). Earthquakes within the
range 170◦ − 180◦E and 48◦ − 55◦N and with magnitudes mb ≥ 4.7 are selected.
An ordinary log-log plot of the daily number of events against time is time shown
in Figure 6. The results from fitting a simple Omori-Utsu formula are

K̂ = 85.088, ĉ = 0.204, p̂ = 1.055, AIC = −811.4,

and from the multiple formula, by assuming that the largest aftershock of MW7.6
also has its own aftershocks, are

K̂ = 82.284, K̂1 = 6.117, ĉ = ĉ1 = 0.204, p̂ = p̂1 = 1.055, AIC = −873.4.
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Fig. 6 An ordinary log-log plot of the number of aftershocks of the 1965 MW 8.7 Rat Island event per day against

time (Ogata and Shimazaki 1984). The curve represents the intensity function fitted to observed data points marked
by the squares.

Here the AIC criteria selects the model where c = c1 and p = p1 as the best model
among the class of models with NT = 1.

One difficulty in applying the multiple Omori-Utsu formula is to determine which
earthquakes are triggering events. The largest aftershocks often have secondary af-
tershocks, but not always. We can use the techniques of residual analysis in Section
5, as a diagnostic tool, to find out which events have secondary aftershocks.

4.2 The Epidemic-Type Aftershock Sequence (ETAS) model

In most cases, aftershock activity consists of secondary aftershock clustering as de-
scribed by the multiple Omori-Utsu formula (70). However, even though possible
triggering events could potentially be determined through a residual analysis, sepa-
rating triggering earthquakes from the others is difficult. Ogata (1988) generalized
this model by not needing to make a distinction between triggering events and the
other events. He proposed that each event, irrespective of whether it is a small or
a big event, can in principle trigger its own offspring. More precisely, the temporal
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conditional intensity of this model is

λ(t) = µ+
∑
i: ti<t

κ(mi) g(t− ti), (71)

or, the full form of the condition intensity for this marked point process is

λ(t,m) = s(m)

[
µ+

∑
i: ti<t

κ(mi) g(t− ti)

]
, (72)

where s(m) = β e−β(m−m0),m ≥ m0, is the p.d.f. form of the Gutenberg-Richter
relation, m0 being the magnitude threshold, κ(m) = A exp[α(m−m0)] is the mean
number of events directly triggered by an event of magnitude m and g(u) =
(p − 1)(1 + t/c)−p/c is the probability density function (p.d.f.) of the time dif-
ference between the parent event and its children, i.e., the p.d.f. form of the Omori-
Utsu formula. Ogata (1988) named (71) the Epidemic-Type Aftershock Sequence
(ETAS) model, based on an analogy with the spread of epidemics. The ETAS model
also belongs to the more general class of self-exciting Hawkes processes (Hawkes
1971a,1971b; Hawkes and Oakes 1974).

Example 6 [Data file: example6.data] The aftershock sequence of the Darfield earth-
quake, New Zealand (MW7.1, 2010-9-4). The dataset is taken from the New Zealand
catalog compiled by GNS, in the region (43.2− 44.0◦S, 171.0− 173.5◦E) and in the
time interval from 1985-1-1 to 2011-7-13. The magnitude threshold is M3.8. By us-
ing the ETAS fitting program in the SASeis software (Ogata 2006), the MLEs of the
model parameters are µ = 0.001414 (events/day), K = 10.32, c = 0.006006 (day),
α = 1.832, p = 1.0167. Figure 7 shows the conditional intensity for the fitted ETAS
model.

Criticality and branching ratio A condition for stability of the ETAS model is that
the process must be subcritical. In data analysis this important condition justifies
whether estimated model parameters are reasonable or irrational. Also, when ex-
tending the ETAS model or specifying an explicit form of an ETAS-like branching
model, the stability conditions must be satisfied. Forecasting with model parameters
that specify a supercritical model definitely overestimate the earthquake risk in the
medium- or long-term future.

The stability of the ETAS model or a more general branching process is closely
related to the concepts of criticality and branching ratio. These two concepts are
identical for the ETAS model, but not the same for general branching processes.
To illustrate the differences between them, we start our discussions on criticality
and the branching ratio with more general assumptions. Readers who would like to
know more details are recommended to read through the following box.
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Fig. 7 Temporal variation of the conditional intensity from fitting the ETAS model to the Darfield earthquake
sequence for (a) the whole time period, and for (b) the time period of the aftershock sequence only. The magnitudes

against occurrence times are plotted in lower panels.

www.corssa.org


Basic models of seismicity: Temporal models 29

We start our discussions with more general branching models with the fol-
lowing assumptions:

(1) The mean number of direct children produced by an event of magnitude m′

is a Poisson random variable with a mean of κ(m′);
(2) The magnitudes of the children from a parent of magnitude m′ are indepen-

dent and identical distributed (i.i.d.) random variable samples (r.v.s) with a
density s(· | m′);

(3) The intensity function of background events is G0(m) = C s0(m), where
s0(m) is the p.d.f. of the magnitude density for background events and C is
a constant.

It is easy to see that the intensity function for the first generation (events of
direct children from background events) is

G1(m) =

∫
S

κ(m′) s(m | m′)G0(m′) dm′,

where S represents the range of magnitudes, and for the second generation is

G2(m) =

∫
S

κ(m′) s(m | m′)G1(m′) dm′.

Similarly,

Gn+1(m) =

∫
S

κ(m′) s(m | m′)Gn(m′) dm′ =

∫
S

K [n](m,m′)G0(m′) dm,

where K [n] (n ≥ 1) is defined by the following recursion:

K [1](m,m′) = κ(m′) s(m | m′),

K [n](m,m′) =

∫
κ(m∗) s(m | m∗)K [n−1](m∗,m′) dm∗, for n = 2, 3, · · · .

Suppose that a(m′) and b(m) are the left and right eigenfunctions of K corre-
sponding to the maximum eigenvalue %, i.e.,

% a(m′) =

∫
S

a(m)K(m;m′) dm, (73)

and

% b(m) =

∫
S

K(m;m′) b(m′) dm′, (74)
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respectively, satisfying ∫
S

a(m) b(m) dm = 1. (75)

Let

Ω(m;m′) = a(m′) b(m), (76)

i.e., Ω is the projection operator of K corresponding to %, or∫
S

Ω(m;m∗)K(m∗;m′) dm∗ =

∫
S

K(m;m∗)Ω(m∗;m′) dm∗

= %Ω(m;m′). (77)

When both κ and s(m | m′) are stepwise continuous functions, i.e., linear integral
equations (73) and (74) can be viewed as the continuum limit of eigenvalue
equations of the form ∑

j

Mi,jvj = %vi,

the maximum eigenvalue is separated from the others, and when n→∞,

K [n]

%n
→ Ω, (78)

and thus

Gn(m)→ %n
∫
S

Ω(m;m′)G0(m′) dm′. (79)

From (79), we can see that if % < 1, then Gn → 0 when n → ∞, and that if
% > 1, then Gn → ∞ when n → ∞. Here % is called the criticality parameter
because if % < 1, the process is stable; otherwise the population might explode
and become infinitely large.

Equation (79) can be rewritten as

Gn(m)→ %n
∫
S

b(m) a(m′)G0(m′) dm′

= %n b(m)

∫
S

a(m′)G0(m′) dm′

= %n b(m)× const, (80)

implying that b(m) is asymptotically proportional to the intensity of the popu-
lation when n→∞.
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The eigenfunction a(m′) can be interpreted as the asymptotic ability in pro-
ducing offspring, directly and indirectly, from an ancestor {m′} because

lim
n→∞

∞∑
i=n

∫
S

K [i](m;m′) dm = lim
n→∞

∞∑
i=n

%i
∫
S

Ω(m;m′) dm

= lim
n→∞

∞∑
i=n

%i a(m′)

∫
S

b(m) dm

= lim
n→∞

%n

1− %
a(m′)× const. (81)

For the ETAS model, where the magnitude density is separable and the back-
ground rate is constant, the eigenvalue equations are

% a(m′) = κ(m′)

∫
S

a(m) s(m) dm, and (82)

% b(m) = s(m)

∫
S

κ(m′) b(m′) dm′, (83)

where M is the magnitude range. We can see that

a(m′) = C1 κ(m′), (84)

and
b(m) = C2 s(m). (85)

Substituting a(m′) and b(m) back into (82) and (83), we get

% =

∫
S

κ(m) s(m) dm. (86)

The branching ratio is defined as the proportion of triggered events in all the
events. To obtain the branching ratio for general branching models, consider a
model with the following intensity

λ(t,m) = µ s0(m) +
∑
ti: ti<t

κ(mi) g(t− ti) s(m | mi). (87)

Taking expectations on both sides with respect to time, we get,

λ̄ s1(m) = E [λ(t,m)] = µ s0(m) + E

[ ∑
ti: ti<t

κ(mi) g(t− ti) s(m | mi)

]
, (88)
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where λ̄ is the total average rate, and s1(m) is the magnitude density for overall
events. The expectation of the summation in the right-hand side can be written
as

E

[ ∑
ti: ti<t

κ(mi) g(t− ti) s(m | mi)

]

= E

[∫
S

∫ t

−∞
κ(m∗) g(t− u) s(m | m∗)× λ̄ s1(m∗) dut dm∗

]
= λ̄

∫
S

κ(m∗) s(m | m∗) s1(m∗) dm∗,

and hence

λ̄ s1(m) = µ s0(m) + λ̄

∫
S

κ(m∗) s(m | m∗) s1(m∗) dm∗. (89)

Integrating on both sides with respect to m gives

λ̄ = µ+ λ̄

∫
S

κ(m∗) s1(m∗) dm∗. (90)

The branching ratio is obtained by

ω = 1− µ

λ̄
=

∫
S

κ(m∗) s1(m∗) dm∗ (91)

which is also the average number of events that are triggered by an arbitrary
event.

For the ETAS model, the magnitude is completely separable from the whole
intensity, and, thus, ω is identical to the criticality parameter %. But this does
not hold for general cases.

Example 7 : Here we assume that h(m) is a probability density function and
H(m) is the corresponding c.d.f. Set

s(m | m′) =
h(m)

H(am′)
, 0 < m < am′, 0 < a ≤ 1.,

and set mc = 0 to abbreviate the notation. That is, the magnitudes of offspring
are limited to not be greater than am′, where m′ is the magnitude of the ancestor
of interest. By Equation (82),

ρV (m′) =
κ(m′)

H(am′)

∫ am′

0

h(m)V (m) dm.
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To obtain the eigenvalue, we apply the limit operation to both side of the above
equality. When Mi → 0, notice that H(0) = 0 and h(M) = H ′(M), then

ρV (0) = κ(0) lim
m′→0

∫ am′
0

h(m)V (m) dm

H(am′)
=
aκ(0)V (0)

a
.

Thus the criticality parameter ρ is

ρ = κ(0).

In this example, if κ(m) is a monotonically increasing function of m, then, by
(91), the branching ratio is

ω =

∫
M
κ(m∗) s1(m∗) dm∗ >

∫
M
κ(0) s1(m∗) dm∗ = κ(0) = %.

For the ETAS model, substituting κ(m) = A eα(m−m0) and s(m) = β e−β(m−m0)

into (86), the criticality parameter is

% =

∫ ∞
m0

s(m)κ(m) dm =
Aβ

β − α
.

When % < 1, the ETAS model is stable and stationary, which requires β ≥ α and
A ≤ 1−α/β. When % ≥ 1, there is a finite probability that the number of events in
a unit time interval becomes infinite as t increases to infinity. More details on the
behavior of the ETAS model were discussed by Helmstetter and Sornette (2002),
Zhuang and Ogata (2006) and Saichev and Sornette (2007).

Applications There have been many applications of the ETAS model. For example:
(i) detection of anomalous seismicity patterns (e.g. Ogata 2005) (ii) characterization
of clustering characteristics by (regional) variations of the ETAS parameters (e.g.
Enescu et al. 2009); (iii) detection of fluid-related forcing signals (e.g. Hainzl and
Ogata 2005; Lombardi et al. 2010); (iv) regional probabilistic earthquake forecasting
(e.g., Helmstetter et al. 2006), and so forth. Here we refer to Zhuang et al. (2011)
for further discussions.

5 Transformed time sequence and residual analysis

Residual analysis is a powerful tool for assessing the fit of a particular model to a
set of occurrence times (e.g., Papangelou 1972; Ogata 1988; Daley and Vere-Jones



34 www.corssa.org

2003). Assume that we have a realization of a point process with event times de-
noted by t1, t2, · · · , tn. We then calculate transformed event times, denoted by
τ1, τ2, · · · , τn, in such a way that the transformed times have the same distribu-
tional properties as the a homogeneous Poisson process with unit rate parameter.
Suppose that the conditional intensity is λ(t). The transformed time sequence, for
i = 1, 2, · · · , n, is calculated as

τi =

∫ ti

0

λ(u) du. (92)

Then the sequence {τi : i = 1, 2, · · · , n} forms a Poisson process with unit rate.
To prove the above statement, we need only to prove that, from any transformed

time τ =
∫ t

0
λ(u) du, the waiting transformed time Y to next event is an exponen-

tial distribution with the unit rate. If the true model for the point process has a
conditional λ(t), by (5) and the equivalence between the conditional intensity and
the hazard function, the survival function of the waiting time X to next event from
t is

St(x) = exp

[
−
∫ t+x

t

λ(u) du

]
. (93)

To continue our proof, we require the following theorem: If X is a continuous
random variable with a strictly increasing distribution function F , then F has an
inverse F−1 defined on the open interval (0,1), and F (X) and 1 − F (U) are both
uniformly distributed on (0,1). Moreover, if U is a uniform r.v. on (0, 1), then F−1(U)
is a r.v. with the distribution function F .

Thus, St(X) = exp
[
−
∫ t+X
t

λ(u) du
]

is a uniform r.v. on (0, 1). Since Y =∫ t
0
λ(u) du, we have St(X) = exp[−Y ], i.e., Y is exponentially distributed with

rate 1.
This method can be used to test the goodness-of-fit of the model. If the fitted

model λ̂(t) is close to the true model, then
{
τ̂i =

∫ ti
0
λ̂(u) du : i = 1, 2, · · · ,

}
is close

to the standard Poisson model. The departure of the rate in the transformed time
sequence from the unit rate indicates either increased activity or quiescence, relative
to the seismic rate expected by the original model.

Example 8 (Continuation of Example 5.) A comparison between the cumulative
numbers of earthquakes (black curve) and the corresponding fit values (red curve,
Figure 5) shows that quiescence may have started on the 17th day after the main-
shock. This is also confirmed in the plot of the transformed time domain (Figure 8).
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Fig. 8 Comparison of the observed and modeled cumulative number of M ≥ 4-aftershocks of the Wenchuan

earthquake: observation (black) and Omori-Utsu formula (red) in the transformed time domain.

6 Related software

There are a couple of versions of available software for fitting the models discussed
in this paper. The first is IASPEI software SASeis implemented by Utsu and Ogata
(1997) which is implemented using FORTRAN code, and later is revised as SA-
Seis2006 by Ogata (2006) (URL: http://www.ism.ac.jp/∼ogata/Ssg/softwares.html).
An alternative is provided by Harte (2010, 2012) in the R package “PtProcess”
(URL: http://cran.r-project.org/web/packages/PtProcess/), which uses an object
orientated approach. R is a statistical computing language developed by R Devel-
opment Core Team (2012).

7 Summary

In this article, we have illustrated a developmental approach to modeling earth-
quake data using statistical models. By applying a sequence of progressively more
sophisticated and possibly competing models, we can refine our understanding of
the earthquake process. Starting from the model of complete randomness, the Pois-
son model, new models are constructed by adding deterministic factors of physical
hypotheses or empirical observations relations. For example, the hypothesis of char-
acteristic recurrence of earthquakes leads to the renewal models, the elastic-rebound
theory leads to the stress release model, and empirical Omori-Utsu formula leads
to the ETAS model. Many interesting studies, extensions and applications of the

http://www.corssa.org/glossary/#deterministic
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above-mentioned models exist. We cannot go through all of them in the scope of
our discussions. Instead, we provide the reader with a general overview of some of
the most important point-process models of seismicity and the relevant methods for
model fitting and inference.
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Appendix: List of aftershocks of the Wenchuan earthquake

Table 5: DATA FILE: example4.data

# year month day hour minute lat. long. mag. days since mainshock

1 2008 5 12 14 28 31 103.4 8 0
2 2008 5 12 14 43 31 103.5 6 0.0104

3 2008 5 12 15 34 31 103.5 5 0.0458
4 2008 5 12 15 40 31 103.6 4.7 0.05

5 2008 5 12 16 10 31.2 103.4 4.8 0.0708

6 2008 5 12 16 21 31.3 104.1 5.2 0.0785
7 2008 5 12 16 26 31.5 103.8 4.3 0.0819

8 2008 5 12 16 35 31.4 103.5 4.6 0.0882

9 2008 5 12 16 36 31 103.2 4.3 0.0889
10 2008 5 12 16 47 32.2 105.4 4.8 0.0965

11 2008 5 12 16 50 32.6 105.2 4.5 0.0986

12 2008 5 12 17 1 32.2 104.7 4.1 0.1062
13 2008 5 12 17 7 31.3 103.8 5 0.1104

14 2008 5 12 17 23 32.3 104.8 5.1 0.1215
15 2008 5 12 17 30 32.4 104.9 4.1 0.1264
16 2008 5 12 17 42 31.4 104 5.2 0.1347
17 2008 5 12 17 54 31 103.2 4.3 0.1431
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# year month day hour minute lat. long. mag. days since mainshock

18 2008 5 12 18 2 32.2 105.1 4.8 0.1486

19 2008 5 12 18 23 31 103.3 4.9 0.1632
20 2008 5 12 19 10 31.4 103.6 6 0.1958

21 2008 5 12 19 33 32.6 105.4 4.5 0.2118

22 2008 5 12 19 41 32.4 105.1 4.6 0.2174
23 2008 5 12 19 45 32.4 105 4 0.2201

24 2008 5 12 19 52 32.6 105.4 4.7 0.225

25 2008 5 12 20 4 32.6 105.2 4.2 0.2333
26 2008 5 12 20 6 32.2 105.5 4.1 0.2347

27 2008 5 12 20 11 31.4 103.8 4.5 0.2382
28 2008 5 12 20 15 32 104.4 4.9 0.241

29 2008 5 12 20 23 32.7 105.3 4.5 0.2465

30 2008 5 12 20 29 31.4 103.9 4.1 0.2507
31 2008 5 12 20 33 31.4 104.1 4.2 0.2535

32 2008 5 12 20 54 31.3 103.4 4.3 0.2681

33 2008 5 12 21 2 31.1 103.5 4.6 0.2736
34 2008 5 12 21 7 31 103.4 4.3 0.2771

35 2008 5 12 21 32 31.2 103.9 4.3 0.2944

36 2008 5 12 21 36 32.9 105.5 4 0.2972
37 2008 5 12 21 40 31 103.5 5.1 0.3

38 2008 5 12 21 55 32 104.3 4.2 0.3104

39 2008 5 12 22 6 32.5 105.1 4 0.3181
40 2008 5 12 22 9 31.9 104.7 4.5 0.3201

41 2008 5 12 22 15 32.2 104.9 4.4 0.3243
42 2008 5 12 22 26 31.3 103.9 4 0.3319

43 2008 5 12 22 37 32.2 104.5 4.3 0.3396

44 2008 5 12 22 46 32.7 105.5 5.1 0.3458
45 2008 5 12 22 55 32.4 105 4.2 0.3521

46 2008 5 12 23 5 31.3 103.6 5 0.359

47 2008 5 12 23 5 31.3 103.5 5.2 0.359
48 2008 5 12 23 16 30.9 103.2 4.1 0.3667

49 2008 5 12 23 28 31 103.5 5 0.375

50 2008 5 13 0 28 31.2 103.8 4.4 0.4167
51 2008 5 13 0 34 32.5 105 4.2 0.4208

52 2008 5 13 1 1 30.9 103.4 4 0.4396

53 2008 5 13 1 29 31.3 103.4 4.6 0.459
54 2008 5 13 1 54 31.3 103.4 5 0.4764

55 2008 5 13 2 46 32.4 105 4.4 0.5125
56 2008 5 13 2 55 31.9 105.1 4.4 0.5188

57 2008 5 13 3 53 31.3 103.6 4.3 0.559

58 2008 5 13 4 8 31.4 104 5.7 0.5694
59 2008 5 13 4 45 31.7 104.5 5.2 0.5951

60 2008 5 13 4 51 32.4 105.2 4.7 0.5993

61 2008 5 13 5 8 31.3 103.2 4.5 0.6111
62 2008 5 13 5 51 32.5 105.3 4.6 0.641

63 2008 5 13 6 19 31.9 104.2 4.1 0.6604

64 2008 5 13 6 24 32.2 105 4 0.6639
65 2008 5 13 6 47 31.3 103.4 4.5 0.6799

66 2008 5 13 7 38 31.9 104.5 4 0.7153

67 2008 5 13 7 46 31.2 103.4 5.3 0.7208
68 2008 5 13 7 54 31.3 103.6 5.1 0.7264

69 2008 5 13 8 22 31.3 104 4.2 0.7458
70 2008 5 13 8 54 32.6 105.2 4.3 0.7681
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# year month day hour minute lat. long. mag. days since mainshock

71 2008 5 13 9 7 31.4 103.7 4 0.7771

72 2008 5 13 10 15 31.6 103.9 4.5 0.8243
73 2008 5 13 10 33 31.3 103.6 4.2 0.8368

74 2008 5 13 10 59 31 103.3 4.3 0.8549

75 2008 5 13 11 0 31.2 103.5 4.7 0.8556
76 2008 5 13 11 48 31.2 103.7 4.5 0.8889

77 2008 5 13 12 45 31 103.3 4.1 0.9285

78 2008 5 13 12 50 31.3 103.4 4.1 0.9319
79 2008 5 13 13 25 32.6 105.2 4.2 0.9562

80 2008 5 13 13 36 32.4 105.2 4.4 0.9639
81 2008 5 13 13 37 31 103.5 4.6 0.9646

82 2008 5 13 14 38 31.4 103.8 4.3 1.0069

83 2008 5 13 15 7 30.9 103.4 6.1 1.0271
84 2008 5 13 15 19 32.3 105 4.8 1.0354

85 2008 5 13 15 51 32.5 105.3 4.4 1.0576

86 2008 5 13 15 53 32.3 105 4.8 1.059
87 2008 5 13 16 11 32.5 105.2 4.1 1.0715

88 2008 5 13 16 20 31.4 103.9 4.8 1.0778

89 2008 5 13 17 41 32.1 104.4 4.1 1.134
90 2008 5 13 18 16 31.8 104.3 4 1.1583

91 2008 5 13 18 36 31.3 103.6 4.1 1.1722

92 2008 5 13 20 51 32.3 105 4.6 1.266
93 2008 5 13 21 13 32.5 105.5 4.4 1.2812

94 2008 5 13 21 31 32.4 105.1 4.5 1.2937
95 2008 5 13 23 10 32.6 105.5 4.1 1.3625

96 2008 5 13 23 54 32.1 104.9 4.5 1.3931

97 2008 5 14 0 23 31.7 104.3 4 1.4132
98 2008 5 14 3 30 31.1 103.3 4.1 1.5431

99 2008 5 14 3 51 31 103.3 4.2 1.5576

100 2008 5 14 6 3 31.3 103.6 4.2 1.6493
101 2008 5 14 8 8 31.1 103.4 4 1.7361

102 2008 5 14 9 9 31.4 103.8 4.8 1.7785

103 2008 5 14 9 56 31.1 103.5 4.1 1.8111
104 2008 5 14 10 54 31.3 103.4 5.6 1.8514

105 2008 5 14 13 54 31.9 104.2 4.9 1.9764

106 2008 5 14 14 33 31.4 103.9 4.1 2.0035
107 2008 5 14 17 26 31.4 104 5.1 2.1236

108 2008 5 14 17 51 32.4 104.2 4.8 2.141
109 2008 5 14 17 57 32.3 104.8 4.2 2.1451

110 2008 5 14 18 0 32.2 104.7 4.7 2.1472

111 2008 5 14 18 11 32.2 104.5 4.2 2.1549
112 2008 5 14 18 18 32.4 105.1 4.8 2.1597

113 2008 5 14 18 30 32.4 105.2 4.9 2.1681

114 2008 5 14 21 29 32.3 105.1 4.5 2.2924
115 2008 5 15 1 17 31.5 103.8 4.8 2.4507

116 2008 5 15 1 33 31.4 103.5 4.6 2.4618

117 2008 5 15 3 59 31.1 103.5 4.2 2.5632
118 2008 5 15 5 1 31.6 104.2 5 2.6063

119 2008 5 15 6 10 31.2 103.6 4.6 2.6542

120 2008 5 15 8 9 31.8 104.4 4.3 2.7368
121 2008 5 15 8 50 31.3 103.4 4 2.7653

122 2008 5 15 12 27 31.3 103.7 4.1 2.916
123 2008 5 15 13 27 32 104.3 4.6 2.9576
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# year month day hour minute lat. long. mag. days since mainshock

124 2008 5 15 20 10 31.4 103.8 4.2 3.2375

125 2008 5 15 21 4 32.6 105.6 4.4 3.275
126 2008 5 16 5 55 32.3 104.7 4.5 3.6437

127 2008 5 16 6 10 31.4 103.9 4.6 3.6542

128 2008 5 16 6 34 31.9 104.4 4.2 3.6708
129 2008 5 16 11 10 32.5 105.1 4 3.8625

130 2008 5 16 11 34 31.4 104.1 4.9 3.8792

131 2008 5 16 13 25 31.4 103.2 5.9 3.9562
132 2008 5 16 14 34 32.4 105.2 4.3 4.0042

133 2008 5 16 18 17 31.3 103.5 4.3 4.159
134 2008 5 16 18 20 32.5 105.1 4 4.1611

135 2008 5 16 18 51 31.4 103.6 4.2 4.1826

136 2008 5 16 21 21 31.9 104.2 4 4.2868
137 2008 5 17 0 14 31.2 103.5 5.1 4.4069

138 2008 5 17 1 22 31.2 103.6 4.5 4.4542

139 2008 5 17 3 59 31 103.5 4.3 4.5632
140 2008 5 17 4 0 32.6 105.4 4.1 4.5639

141 2008 5 17 4 15 32.2 104.4 4.8 4.5743

142 2008 5 17 4 16 31.3 103.5 5 4.575
143 2008 5 17 4 29 31.4 103.3 4.5 4.584

144 2008 5 17 6 33 32.2 105.1 4.2 4.6701

145 2008 5 17 7 23 31.3 103.8 4.2 4.7049
146 2008 5 17 8 28 31.6 104 4.1 4.75

147 2008 5 17 8 38 32 104 4 4.7569
148 2008 5 17 15 38 32 104.4 4.1 5.0486

149 2008 5 17 21 32 32.2 104.7 4.7 5.2944

150 2008 5 18 1 8 32.1 105 6 5.4444
151 2008 5 18 4 26 31.2 103.5 4.1 5.5819

152 2008 5 18 8 45 31.8 104 4.2 5.7618

153 2008 5 18 9 4 31.1 103.5 4.2 5.775
154 2008 5 18 11 51 31 103.4 4.2 5.891

155 2008 5 18 17 25 31.2 103.1 4 6.1229

156 2008 5 18 20 37 31.3 103.2 4.2 6.2562
157 2008 5 19 12 8 32.1 105 4.8 6.9028

158 2008 5 19 14 6 32.5 105.3 5.4 6.9847

159 2008 5 20 1 52 32.3 104.9 5 7.475
160 2008 5 20 8 57 31.7 104 4.1 7.7701

161 2008 5 20 11 42 32.6 105.4 4 7.8847
162 2008 5 20 12 17 30.8 103.3 4.3 7.909

163 2008 5 20 14 54 31.8 104.2 4 8.0181

164 2008 5 21 0 38 30.9 103.3 4 8.4236
165 2008 5 21 16 40 31.4 103.3 4.1 9.0917

166 2008 5 21 17 33 32.3 105.2 4.5 9.1285

167 2008 5 21 21 59 31.4 103.9 4.5 9.3132
168 2008 5 21 23 29 32.4 105.1 4.3 9.3757

169 2008 5 22 4 36 32.2 104.8 4.6 9.5889

170 2008 5 22 15 18 31.2 103.6 4.7 10.0347
171 2008 5 22 19 22 32.6 105.4 4 10.2042

172 2008 5 22 23 0 31.9 104.3 4.3 10.3556

173 2008 5 23 1 37 31.3 103.6 4.6 10.4646
174 2008 5 23 8 5 31.2 103.6 4.7 10.734

175 2008 5 23 9 23 31.2 103.5 4.2 10.7882
176 2008 5 23 11 12 31.2 103.2 4.2 10.8639
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# year month day hour minute lat. long. mag. days since mainshock

177 2008 5 24 0 10 32.2 105 4 11.4042

178 2008 5 24 1 53 32.5 105.2 4.1 11.4757
179 2008 5 24 11 0 31.1 103.4 4 11.8556

180 2008 5 25 12 27 32 104.6 4.2 12.916

181 2008 5 25 16 21 32.6 105.4 6.4 13.0785
182 2008 5 25 17 34 33 104.9 4.7 13.1292

183 2008 5 26 8 39 30.8 103.3 4.3 13.7576

184 2008 5 27 16 3 32.7 105.6 5.4 15.066
185 2008 5 27 16 37 32.8 105.6 5.7 15.0896

186 2008 5 27 21 59 32.5 105.2 4.7 15.3132
187 2008 5 28 0 46 32.2 104.6 4.2 15.4292

188 2008 5 28 1 35 32.7 105.4 4.7 15.4632

189 2008 5 29 12 48 32.6 105.5 4.6 16.9306
190 2008 5 29 15 10 31.4 103.7 4.5 17.0292

191 2008 5 31 14 22 32.4 105 4 18.9958

192 2008 5 31 15 34 32.6 105.4 4 19.0458
193 2008 6 1 11 23 31.6 104 4.5 19.8715

194 2008 6 3 11 9 32 104.5 4.3 21.8618

195 2008 6 5 1 26 32.3 105.1 4 23.4569
196 2008 6 5 5 21 31.2 103.4 4.2 23.6201

197 2008 6 5 12 41 32.3 105 5 23.9257

198 2008 6 5 14 2 32.7 105.5 4.3 23.9819
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