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Abstract Seismicity declustering, the process of separating an earthquake catalog
into foreshocks, mainshocks, and aftershocks, is widely used in seismology, in par-
ticular for seismic hazard assessment and in earthquake prediction models. There
are several declustering algorithms that have been proposed over the years. Up to
now, most users have applied either the algorithm of Gardner and Knopoff (1974)
or Reasenberg (1985), mainly because of the availability of the source codes and
the simplicity of the algorithms. However, declustering algorithms are often ap-
plied blindly without scrutinizing parameter values or the result. In this article we
present a broad range of algorithms, and we highlight the fundamentals of seis-
micity declustering and possible pitfalls. For most algorithms the source code or
information regarding how to access the source code is available on the CORSSA
website.

1 Motivation

Generally, scientists understand seismicity to consist of two parts: (1) earthquakes
that are independent and (2) earthquakes that depend on each others like after-
shocks, foreshocks, or multiplets. Independent earthquakes are assumed to be mostly
caused by secular, tectonic loading or, in the case of seismic swarms, by stress tran-
sients that are not caused by previous earthquakes. The second part corresponds
to earthquakes triggered by static or dynamic stress changes, seismically-activated
fluid flows, after-slip, etc., hence by mechanical processes that are at least partly
controlled by previous earthquakes. The process of separating earthquakes into these
two classes is known as seismicity declustering.

There is a wide range of terminology for these two classes. Independent earth-
quakes are also known as background earthquakes, mainshocks, or parent earth-
quakes, while dependent earthquakes are also called aftershocks, foreshocks, trig-
gered earthquakes, or offspring. The ultimate goal of declustering is therefore to
isolate the class of background earthquakes, i.e. earthquakes that are independent
of all preceding earthquakes. Alternatively, this corresponds to removing the depen-
dent earthquakes that form seismicity clusters, hence the name ’declustering’. For
large enough tectonic regions, the subset of independent earthquakes is expected to
be homogeneous in time, i.e., a stationary Poisson process. Seismic swarms, typi-
cally caused by magma or fluid intrusions, are a special case. Although swarms, by
defintion, consist of independent earthquakes, they are more appropriately modeled
as a strongly non-homogeneous Poisson process. Such a process is characterized by
a time-varying rate (which models the intrusion) that is not conditioned on the
earthquake history of the area: the intrusion generates earthquakes, but is itself not
caused by earthquakes.

http://www.corssa.org/glossary/#decluster
http://www.corssa.org/glossary/#earthquake_catalog
http://www.corssa.org/glossary/#foreshock
http://www.corssa.org/glossary/#mainshock
http://www.corssa.org/glossary/#aftershock
http://www.corssa.org/glossary/#stress
http://www.corssa.org/glossary/#background_earthquake
http://www.corssa.org/glossary/#triggered_earthquake
http://www.corssa.org/glossary/#triggered_earthquake
http://www.corssa.org/glossary/#stationary
http://www.corssa.org/glossary/#Poisson_distribution
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The identification of background earthquakes is important for many applications
in seismology, including seismic hazard assessment, development of clustered seis-
micity models, earthquake prediction research, and seismicity rate change estima-
tion. However, this is an ill-posed problem in that it does not have a unique solution.
When studying large tectonic areas, one can construct many distinct earthquake sub-
sets that are modeled as a stationary Poisson process. Indeed, for any such subset,
any randomly-picked (thinned) sub-subset, e.g., by randomly keeping background
earthquakes with a given fixed probability, will also by construction be a stationary
Poisson process. The requirement that the selected earthquakes are independent of
each other is therefore not sufficient by itself.

All declustering methods must therefore rely on a conceptual model of what is a
mainshock. It is this underlying model that distinguishes declustering methods, and
also what makes their comparison of interest to seismologists. Since all methods are
model-dependent to some extent, there does not exist an a priori ’best’ method. As
will be detailed in section 5, there are many declustering algorithms. Until recently,
most users have been applying variants of the methods proposed by Gardner and
Knopoff (1974) or Reasenberg (1985) - mostly because they are readily available
and relatively simple to apply. The goal of this article is (1) to present an extensive
list of available declustering algorithms, (2) to mention if there is a code available,
and where to get it, and (3) to discuss pros and cons of each method.

2 Starting Point

The process of seismicity declustering starts with a seismicity catalog containing
source parameters such as occurrence time, hypocenter or epicenter location, and
magnitude. It is important to understand seismicity catalogs and their problems
(for example, artifacts and quality control) to avoid pitfalls. Due to incompleteness,
changes in the magnitude scales, and artifacts in seismicity catalogs can bias the
process of declustering, preliminary quality control of the catalog is required. Since
declustering methods generally have parameters related to spatio-temporal cluster-
ing, as well as epicenter and source depth distributions, reading the Introduction
to Basic Feature of Seismicity is also beneficial for this chapter (Link to Poisson
distributions III 7).

3 Ending Point

This article will provide you with practical and theoretical know-how about seis-
micity declustering. You will find the codes, or information where to get the codes
or the original publication, example data as well as explanations to support you in

www.corssa.org
http://www.corssa.org/glossary/#seismicity_rate
http://www.corssa.org/glossary/#hypocenter
http://www.corssa.org/glossary/#epicenter
http://www.corssa.org/glossary/#magnitude
http://www.corssa.org/articles/themeiv/index
http://www.corssa.org/articles/themeiv/gulia_et_al
http://www.corssa.org/glossary/#completeness_(magnitude_of_completeness,_completeness_magnitude)
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its applications. For the reasons already mentioned, we avoid making an absolute
judgment on which method is best or worst.

4 Theory

The goal of seismicity declustering is to separate earthquakes in the seismicity cata-
log into independent and dependent earthquakes. Aftershocks, which are dependent
earthquakes, cannot be distinguished by any particular, outstanding feature in their
waveforms. They can thus only be selected on the basis of their spatio-temporal
proximity to other, previous earthquakes, and / or by the fact that they occur at
rates greater than the seismicity rate averaged over long durations. To relate an
aftershock to a mainshock therefore requires defining a measure of the space-time
distance between the two, and a criterion based on this measure that needs to be
met. All declustering methods follow this general scheme. Before discussing in depth
the available algorithms in detail in Section 5, it is of some interest to give a short
summary of how research on declustering has developed over the years.

The first attempts to define whether an earthquake catalog is Poissonian or not
were made by Aki (1956) and Knopoff (1964) who found that earthquake catalog
do not generally fit a Poisson distribution. Knopoff (1964) probably introduced for
the first time a kind of declustering algorithm by excluding the aftershocks from
the analysis. They counted earthquakes in successive ten-day bins and found a his-
togram showing many feature of a Poisson distribution. Ten years later, Gardner
and Knopoff (1974) introduced a procedure for identifying aftershocks within seis-
micity catalogs using inter-event distances in time and space. They also provided
specific space-time distances as a function of the mainshock magnitude to identify
aftershocks but encouraged readers to try out other values. This method is known as
a window method and is one of the simplest forms of aftershock identification. They
ignored secondary and higher order aftershocks (i.e., aftershocks of aftershocks): if
an earthquake C falls in the triggering windows of the two potential mainshocks A
and B, then only the largest shock A or B is kept as the actual mainshock of C,
regardless of the possibility that C might be significantly closer in space and time
to the other shock. They also did not consider fault extension for larger magnitude
earthquakes by assuming circular spatial windows. Reasenberg (1985)’s algorithm
allows to link up aftershock triggering within an earthquake cluster: if A is the
mainshock of B, and B the mainshock of C, then all A, B and C are considered to
belong to one common cluster. When defining a cluster, only the largest earthquake
is finally kept to be the cluster’s mainshock. Another crucial development in this
method is that the space-time distance is based on Omori’s law (for its temporal
dependence): as the time from the mainshock increases, the time one must wait
for the next aftershock also increases in proportion. Another cluster method was

http://www.corssa.org/glossary/#Omori-Utsu_relation
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introduced by Molchan and Dmitrieva (1992) by applying a game theory approach
to formulate the problem allowing a whole class of optimal methods of aftershock
identification.

So far, the algorithms mentioned here have been deterministic, i.e., each earth-
quake is classified either as a mainshock or as an aftershock. Another class of seismic-
ity declustering algorithm came with the stochastic model of Zhuang et al. (2002)
which is based on a space-time branching process model (see, for example, this
CORSSA article) to describe how each event generates offspring events. This ap-
proach generalizes and improves previous methods in two ways: (1) the choice of
the space-time distance is optimized in order to best model the earthquake dataset,
within the limits of the ETAS model. As such, there is no need to assume arbi-
trary values for the parameters that enter the space-time distance, although the
parameterized form of the distance is imposed a priori. This comes with a cost:
this optimization can sometimes be time-consuming and delicate to perform. (2) In-
stead of binary linking an aftershock to only one mainshock, this method gives, for
each earthquake, the associated probabilities that it is an aftershock of each preced-
ing earthquake (i.e., all preceding earthquakes are thus potential mainshocks). This
makes for a much more sophisticated approach: if the space-time distance is roughly
the same between A and C and between B and C, then instead of only keeping either
A or B as the mainshock of C, this method keeps both earthquakes as mainshocks
of C with roughly equal probability, reflecting the difficulty to make a clear decision
in such a case. A limit to this method stems from the use of the ETAS model, as
it imposes the parameterized form of the space-time distance. While this is appro-
priate for the temporal dependence, given the ubiquity of the Omori-Utsu law for
describing the decaying influence of a mainshock, this is not the case anymore when
considering the spatial dependence, or the space-time coupling (i.e., change with
time of the spatial dependence) as no firm consensus exists on these yet. Marsan
and Lengline (2008) went therefore a step further, by generalizing this triggering
kernel without assuming a specific form. Moreover, the optimization of their model,
based on an Expectation-Maximization algorithm, is easier to compute and more
robust than traditional schemes used to invert the ETAS model, thanks to the fact
that the solution does not depend on the initial choice of the parameters. Note
that the solution however depend on the binning of the kernels, both spatial and
temporal. This dependence is very mild as long as each bin is sufficiently populated.

Elaborating on the space-time distance proposed by Baiesi and Paczuski (2004),
Zaliapin et al. (2008) showed that the background earthquakes can be identified
by exploring a space-time graphical representation of this distance. Hainzl et al.
(2006) uses the interevent-time distribution to reconstruct non-parametrically the
background earthquake rate and could therefore provide an alternative to standard
declustering algorithms. The seismicity declustering algorithms mentioned above are

www.corssa.org
http://www.corssa.org/glossary/#deterministic
http://www.corssa.org/glossary/#stochastic
http://www.corssa.org/articles/themev/zhuang_et_al_c
http://www.corssa.org/articles/themev/zhuang_et_al_c
http://www.corssa.org/glossary/#epidemic_type_aftershock_sequence_(ETAS)
http://www.corssa.org/glossary/#Omori-Utsu_relation
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Fig. 1 Results of various declustering methods. (a) Cumulative number of M ≥ 3.5 earthquakes after declustering

the ANSS catalog in the California CSEP testing region (Schorlemmer and Gerstenberger 2007) between 1981
and 2010. We also report the 5%-and 95%-percentile of 1000 simulated declusterings produced by varying the

parameter values of Reasenberg (1985) and Gardner and Knopoff (1974). (Note that the uncertainties of ±10% on

the window parameter values of Gardner-Knopoff have only a small effect). (b) Histogram for these realizations with
the χ2-values (color code is identical to a). The dashed arrows indicate the 5% significance level of being Poissonian

(χ2-boundary values). For realizations with 1000 simulations histograms are shown, data based on a single run are
indicated with a solid arrow. Thus, if the χ2-value is below the χ2-boundary value, the distribution follows a Poisson

one.

described in section 5 together with information on where the code or algorithms is
available. Bottiglieri et al. (2009) also uses interevent-time to distinguish Poissonian-
like periods and clustered, aftershock activity. This is done by using a simple statistic
(the coefficient of variation of the interevent-time) and iteratively finding a threshold
for this statistic that allows for this separation in two classes.
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All these published declustering algorithms were designed with a specific research
focus such as establishing Poissonian background seismicity or analyzing aftershock
sequences and their properties. Figure 1 shows the cumulative number of earth-
quakes of the seismicity background established by several declustering algorithms
and, as a quality estimate for declustering, the χ2 goodness of fit test to determine
how well they are fit by a Poisson distribution. For the χ2 goodness-of-fit test, our
null hypothesis is that earthquakes obey a Poisson distribution in time. We test
the time distribution of the events in the declustered catalogs and reject the null
hypothesis at the 5% significance level. In practice, if the computed χ2-statistics of a
declustered catalog is smaller than the χ2-statistics of a theoretical Poisson distribu-
tion, the null hypothesis is accepted and we conclude that the temporal distribution
of earthquakes in the declustered catalog follows a Poisson distribution. These re-
sults demonstrate the ambiguity of seismicity declustering and how difficult it can
be to estimate the quality of the algorithm. According to this test, the seismicity
background derived by the methods of Zhuang et al. (2002), Marsan and Lengline
(2008), and Gardner and Knopoff (1974) follow a Poisson distribution while the
absolute numbers varies almost by a factor of two. The resulting background seis-
micity based on declustering using the method of Reasenberg (1985) with standard
parameter values does not follow a Poisson distribution, nor does it for most other
parameter values.

There can exist quiet periods during which no large shock occurs and the earth-
quake rate remains roughly constant at a low level. For traditional methods like
those of Gardner and Knopoff (1974) and Reasenberg (1985), such periods are de-
void of earthquake clusters, and the earthquake rate is then equal to the declustered,
hence background rate. On the contrary, for the methods proposed by Zhuang et al.
(2002) and Marsan and Lengline (2008), even during such quiet periods there is trig-
gering at work. This effect might be more pronounced depending on the earthquake
catalog that is used and the magnitude of completeness, i.e. influence of linking
earthquakes, and therefore might change the resulting background seismicity (see
Figure 4 in Woessner et al. (2010)). However, this effect has not been systematically
analyzed yet.

The large variation between declustered catalogs, derived using different methods
and parameter values (Figure 1), indicates the non-unique and broad view of what
earthquake activity is made of, in particular concerning the existence of secondary
aftershocks. We therefore emphasize that, if declustering results are used for further
studies, the effect of the choice of the algorithm on the results should in principle be
tested, for example by varying the space-time distance parameters, or even better
by using several distinct methods.

www.corssa.org
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Ideally, seismicity declustering should be applied to a homogeneously recorded
and complete seismicity catalog. The data should be free of artifacts such as those
discussed in the CORSSA article on catalog artifacts and quality control. Moreover,
users should be aware of the possible effect of censored data on the result; censored
data are earthquakes located outside the region of interest and occurring before
the time of interest. The magnitude threshold (i.e., completeness) can also affect
declustering. The censoring of earthquakes implies that triggering chains are severed,
and can therefore result in defining too many clusters or can result in too many
earthquakes not being identified as part of any cluster that should be.

5 Available Algorithms

5.1 Window Methods

Windowing techniques are a simple way of identifying mainshocks and aftershocks.
For each earthquake in the catalog with magnitude M , the subsequent shocks are
identified as aftershocks if they occur within a specified time interval T (M), and
within a distance interval L(M). Foreshocks are treated in the same way as after-
shocks, i.e., if the largest earthquake occurs later in the sequence, the foreshock is
treated as an aftershock. Consequently, the time-space windows are reset according
to the magnitude of the largest shock in a sequence. Usually, these algorithms do not
distinguish between direct and indirect aftershocks, i.e., 1st-generation aftershocks
and aftershocks of aftershocks. The aftershock identification windows can vary sub-
stantially from one study to the other (see Figure 2 or cf. Molchan and Dmitrieva
(1992) Figure 1), and usually do not result from an optimization procedure. We
give in Tables 1 and 2 the lengths and durations of these windows, according to
(Knopoff and Gardner 1972) and (Gardner and Knopoff 1974). An approximation
of the windows sizes according to Gardner and Knopoff (1974) is shown in equation
1. Additionally, we present in equation 2 and 3 alternative window parameter set-
tings proposed by Gruenthal through personal communication to the authors of the
MATLAB code (see CORSSA Website to this article) and by Uhrhammer (1986).
This algorithm is straightforward and easy to implement. The online supplement to
this article provides codes written in Java as well as MATLAB.

d = 100.1238∗M+0.983 [km] t =

{
100.032∗M+2.7389, if M ≥ 6.5

100.5409∗M−0.547, else
[days] (1)

http://www.corssa.org/articles/themeiv/gulia_et_al/index
http://www.corssa.org/articles/themev/van_stiphout_et_al
http://www.corssa.org/articles/themev/van_stiphout_et_al
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d = e1.77+(0.037+1.02∗M)2
[km] t =

{
|e−3.95+(0.62+17.32∗M)2|, if M ≥ 6.5

102.8+0.024∗M , else
[days]

(2)

d = e−1.024+0.804∗M [km] t = e−2.87+1.235∗M [days] (3)

M L(km) T(days)

≤ 4.99 20 100
5.0–5.49 40 150

5.5–5.99 70 200

6.0–6.49 100 280
6.5–6.99 180 400

7.0–7.49 300 650

7.5–7.99 400 1000
8.0–8.49 700 1000

8.5–8.99 900 1000

Table 1 Aftershock identification windows (Knopoff and Gardner 1972)

M L(km) T(days)

2.5 19.5 6
3.0 22.5 11.5

3.5 26 22

4.0 30 42
4.5 35 83

5.0 40 155

5.5 47 290
6.0 54 510

6.5 61 790
7.0 70 915

7.5 81 960

8.0 94.0 985

Table 2 Aftershock identification windows (Gardner and Knopoff 1974)

5.2 Cluster Method - Reasenberg

Reasenberg (1985) introduced a method for identifying aftershocks by linking earth-
quakes to clusters according to spatial and temporal interaction zones. Earthquake
clusters thus typically grow in size when processing more and more earthquakes.
This method is based on the previous work of Savage (1972). The spatial extent of
the interaction zone is chosen according to stress distribution near the mainshock,

www.corssa.org
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a) b)

Fig. 2 Aftershock identification windows in space (a) and time (b) domain are shown as a function of the mainshock

magnitude. The circles indicates the original parameter values according to Knopoff and Gardner (1972) (Table

1) and Gardner and Knopoff (1974) (Table 2). The function to approximate the values of Gardner and Knopoff
(1974) is shown besides two alternative window parameter settings from Gruenthal and Uhrhammer.

and incorporates after-slip, although in a rudimentary way. Reasenberg (1985)’s spa-
tial interaction relationship is defined by the threshold log d(km) = 0.4M0−1.943+k
(Molchan and Dmitrieva 1992), where k is 1 for the distance to the largest earth-
quake and 0 for the distance to the last one. The temporal extension of the interac-
tion zone is based on Omori’s law. All linked events define a cluster, for which the
largest earthquake is considered the mainshock and smaller earthquakes are divided
into fore- and aftershocks. The details of the method can be found in the original
paper of Reasenberg (1985), while Molchan and Dmitrieva (1992) provide a con-
densed summary of this original paper.

The original research focus of Reasenberg (1985) was the detection of fore- and
aftershocks in central California between 1969 and 1982 for events with M≥4. Since
then, this algorithm has been a very popular one among the seismological commu-
nity. It has become common practice to use the standard parameter values of Table
3. However, a specific set of parameter values seems to be an arbitrary choice. In
Table 3 we also provide parameter ranges that have been used in the RELM testing
center (Schorlemmer and Gerstenberger 2007). It is recommended to analyze the
effect of varying the parameter values.

The parameter τmin and τmax denote the minimum and maximum look-ahead time
of observing the next earthquake at a certain probability, p1. These three parame-
ters are associated according to Equation 4 (Reasenberg 1985, eq. 13), assuming the
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Omori rate decay exponent to be 1 and ∆M = Mmainshock − xxmeff , where xmeff
denotes the minimum magnitude cutoff for the earthquake catalog. During clusters
the effective cutoff magnitude, xmeff , is raised by a factor xk of the largest earth-
quake in the cluster (xk, Mmainshock). The parameter rfact detnotes the number of
crack radii (see Kanamori and Anderson 1975) surrounding each earthquake within
which to consider linking a new event into cluster.

τ = −ln(1− p1)t/102(∆M−1)/3 (4)

The latest version of this declustering algorithm has been named CLUSTER2000,
and can be downloaded from the USGS webpage. The online supplement to this ar-
ticle also includes a code of the Reasenberg algorithm written in MATLAB.

Parameter Standard Min Max

τmin [days] 1 0.5 2.5
τmax [days] 10 3 15

p1 0.95 0.9 0.99

xk 0.5 0 1
xmeff 1.5 1.6 1.8

rfact 10 5 20

Table 3 Input parameters for declustering algorithm by Reasenberg (1985), where τmin is the minimum value of
the look-ahead time for building clusters when the first event is not clustered, τmax is the maximum value of the

look-ahead time for building clusters, p1 is the probability of detecting the next clustered event used to compute the

look-ahead time, τ , xk is the increase of the lower cut-off magnitude during clusters: xmeff = xmeff + xkM , where
M is the magnitude of the largest event in the cluster, xmeff is the effective lower magnitude cutoff for catalog, rfact

is the number of crack radii surrounding each earthquake within new events considered to be part of the cluster.

The standard parameter derived for northern California are given in the first column, the second and third column
show the ranges for the parameters used for the simulations in the χ2 goodness of fit test to determine how well

they fit a Poisson distribution (Figure 1).

5.3 Stochastic Declustering

The windowing and link-based declustering algorithms discussed in this article in-
volve subjectively chosen parameter values for the window sizes or the link distance.
Different choices of parameter values result in different declustered catalogs and dif-
ferent estimates of the background seismicity. The choices of these parameters are
usually based on the experience of the researchers for specific data; sometimes they
are chosen by a trial and error process driven by the declustering outcome, i.e. based
on the temporal smoothness of the declustered catalog.

www.corssa.org
http://earthquake.usgs.gov/research/software/#CLUSTER
http://www.corssa.org/articles/themev/van_stiphout_et_al
http://www.corssa.org/articles/themev/van_stiphout_et_al
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Alternative to deterministic declustering methods, ideas of probabilistic separa-
tion of the background component and clustering component first vaguely appeared
in Kagan and Jackson (1991). Zhuang et al. (2002) suggested the stochastic declus-
tering method to bring such a probabilistic treatment into practice based on clus-
tering models, such as the ETAS model. The core of the stochastic declustering
method is the estimated background intensity, assumed to be a function of space
but not of time, and the parameters associated with clustering structures. Making
use of the thinning operation for point processes, one can obtain the probabilities
that each event is a background event or a triggered event.

The ETAS model, on which we base the stochastic declustering, can be repre-
sented by a conditional intensity (please see Article 14) in the form of

λ(t, x, y) = µ(x, y) +
∑

{k: tk<t}

κ(mk)g(t− tk)f(x− xk, y − yk|mk), (5)

where µ(x, y) is the background intensity function and is assumed to be inde-
pendent of time, and the functions g(t) and f(x, y|mk) are respectively the nor-
malized response functions (i.e., p.d.f.s) of the occurrence time and the location,
the magnitude of an offspring from an ancestor of magnitude mk. From the fact
that the kth event excites a non-stationary Poisson process with intensity function
κ(mk)g(t−tk)f(x−xk, y−yk|mk), it can be seen that κ(mk) represents the expected
number of offspring from an ancestor of size mk.

Suppose that events are numbered in chronological order from 1 to N . In equation
5, the probability of an event j being triggered by the ith event can be estimated
naturally as the relative contribution from the ith event from the occurrence rate
at the occurrence time and spatial location of the jth event, i.e.,

ρij =
κ(mi)g(tj − ti)f(xj − xi, yi − yj|mi)

λ(tj, xj, yj)
. (6)

i.e., the relative contribution of the ith event to the occurrence rate at the time and
the location of event j. Similarly, the probability that Event j is a background event
or a triggered event are, respectively,

ϕj =
µ(xj, yj)

λ(tj, xj, yj)
(7)

and

ρj = 1− ϕj =

j−1∑
i=1

ρij (8)

http://www.corssa.org/glossary/#conditional_intensity
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ϕj ρ1j ρ2j ρXj,j ρj−1,j

Uj0 1

Fig. 3 An illustration of the stochastic declustering algorithm.

Fig. 4 A realization of stochastically declustered JMA catalog (MJ ≥ 4.0). (a) and (b) are the location maps for

background events and triggered events, respectively. (c) and (d) are space-time plots for background seismicity and
triggered seismicity, respectively. Please see the definitions of ϕj and ρij in equations 6 and 7.

That is to say, selecting each event j with probability ρij, ϕj or ρj, we can realize
the subprocess triggered by event i, the background subprocess or the clustering
subprocess, respectively. Given the estimated model parameters (see Article 14) or
Zhuang et al. (2002) for the iterative algorithm for simultaneously estimating the
background rate and the model parameters), we can apply the following algorithm
to separate the whole catalog into different family trees.

www.corssa.org
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Algorithm: Stochastic classification of earthquake clusters (illustrated as Figure 3)

1. Calculate ϕj and ρij by using equations 6 and 7, where j = 1, 2, · · · , N and
i = 1, 2, · · · , j − 1, being the total number of events.

2. For each event j, j = 1, 2, · · · , N , generate a random variable Uj, uniformly
distributed on [0, 1].

3. For each j, let

Ij = min{k − 1 : ϕj +
k∑
i=1

ρij ≥ Uj and 0 ≤ k < j}.

If Ij = 0, then select j as a background or initial event; else, set the jth event to
be a direct offspring of the Ijth event.

Once the catalog is divided into different family trees, we we can keep the ini-
tiating events in each family as representative of the background seismicity. The
mainshock, which is the biggest event in its family, may not be selected as back-
ground in this way. However, if preferred, we can use the biggest events in each
family instead of the initiating events to create the background catalog. Since the
output of stochastic declustering is not unique, we usually generate many copies of
the declustered catalogs and use them to test an hypothesis associated with back-
ground seismicity or earthquake clustering. Alternatively, we can also work directly
on the probabilities ϕj and ρij to test such hypotheses. This method is also called
stochastic reconstruction, introduced by Zhuang et al. (2004) and Zhuang (2006).
Figure 4 shows a realization of stochastically declustered JMA catalog and illus-
trates the stochastic declustering algorithm.

We provide with the online supplement to this article the contact (email) of the
author of this method.

5.4 Model-Independent Stochastic Declustering

The stochastic declustering of Zhuang et al. (2002), as described above, can be ex-
tended to other classes of models (other than ETAS). Indeed, the generalization by
Marsan and Lengline (2008) has no specific underlying model, and can therefore ac-
cept any (additive) seismicity model, hence the name Model-Independent Stochastic
Declustering or MISD. Namely, seismicity is described as the following: an earth-

http://www.corssa.org/articles/themev/van_stiphout_et_al
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quake A of magnitude ma in the magnitude interval [mi,mi+1] and occurring at
time ta triggers aftershocks at location x and time t > ta with conditional intensity

λa(x, t) =
∑
j

∑
k

λijk θ(tj ≤ t− ta < tj+1) θ(rk ≤ ra(x) < rk+1) (9)

where λijk are the unknowns (the triple indices denote (i) magnitude (j) time (k)
distance), θ(P ) = 1 if proposition P is true, 0 otherwise, [tj, tj+1] and [rk, rk+1] are
the discretization intervals in time and distance, and ra(x) is the (2D or 3D) dis-
tance between the triggering earthquake and the location of interest x. Compared
to ETAS, this triggering kernel also depends on time, distance and magnitude, but
with no specific form imposed a priori. Indeed, this formulation is equivalent to a
simple piecewise constant triggering kernel. On top of this triggering, which gives
the clustered part of the seismicity, background earthquakes occur with constant
and spatially uniform rate density µ. MISD first requires to define the discretization
intervals in magnitude, time and distance, and then amounts to finding the best λijk
given the data.

In order to find these unknowns, an Expectation-Maximization algorithm can be
used. It is based on the iterative computation of the probabilities ωab that earthquake
a triggered earthquake b, and ω0b that b is a background earthquake, as already
introduced in Section 5.3. Two steps are required:

Expectation: given a priori intensities λijk and µ, then, for all earthquakes
b, compute the probabilities ωab and ω0b (please note that the nomenclature here
follows the one in the original publication; ωab and ω0b correspond to ρij and φj in
the previous section on stochastic declustering), defined as

ωab =
λa(xb, tb)

µ+
∑

c<b λc(xb, tb)
(10)

and

ω0b =
µ

µ+
∑

c<b λc(xb, tb)
(11)

where the intensities are defined in Equation 9.

Maximization: Knowing the probabilities ω, we now compute the Maximum
Likelihood Estimates of λijk and µ. It can be shown that these MLE are

λijk =
nijk

ni (tj+1 − tj) δVk
(12)

www.corssa.org


Seismicity Declustering 17

and

µ =
n0

T V
(13)

where ni is the number of earthquakes with magnitude in the interval [mi,mi+1], δVk
is the volume of the shell rk < r < rk+1, T is the total duration of the dataset, and V
its total volume. The ’number’ nijk is the number of earthquake pairs (a, b) such that
a has magnitude in the interval [mi,mi+1], and are separated by tb − ta ∈ [tj, tj+1]
and rab ∈ [rk, rk+1], weighted by the probability ωab. Similarly, n0 is the ’number’ of
background earthquakes: n0 =

∑
b ω0b.

These two steps are iterated until convergence of λijk and µ is obtained. Initial
conditions for λijk and µ must be provided; the strength of this algorithm is that the
final solution does not depend on this initial choice, as long as it is not cumbersome,
i.e., one must avoid zero values. Finally, the declustered catalog can be obtained
from ω0b: earthquake b is kept as a background earthquake if a random realization
of a uniform random number between 0 and 1 is less than ω0b. Figure 5 shows a
comparison of the declustered catalogs obtained by using this method, and those
obtained using other methods.

Marsan and Lengline (2010) further discuss how the choice of the distance be-
tween earthquakes has implications in the resulting declustering. In particular, the
best choice is to define rab as the distance from the fault of earthquake a to the
hypocenter of earthquake b.

We provide with the online supplement to this article the contact (email) of the
author of this method.

5.5 Single-link cluster analysis

Frohlich and Davis (1990) proposed a space-time distance between two earthquakes
i and j as:

dij =
√
r2
ij + C2(tj − ti)2 (14)

A scaling constant C = 1 km.day−1 was found to give satisfactory results. An
earthquake j is then the aftershock of i? if the distance dij is minimized when
i = i?, and if di?j < D where the threshold D depends on the background activity
of the analyzed region. Davis and Frohlich (1991) further investigated how D can

be optimized. They found that D = 9.4 km1/2.
√
S1 − 25.2 km gives good results,

where S1 is the median of all di?j distances.

http://www.corssa.org/articles/themev/van_stiphout_et_al
http://www.corssa.org/glossary/#median


18 www.corssa.org

32

33

34

35

36

La
tit

ud
e

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

a : All m ≥ 3 earthquakes

32

33

34

35

36

La
tit

ud
e

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

b : Gardner− Knopoff

32

33

34

35

36

La
tit

ud
e

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Years

c : Reasenberg (mc = 2)

32

33

34

35

36

La
tit

ud
e

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Years

d : MISD

0

500

1000

1500

2000

B
ac

kg
ro

un
d 

m
 ≥

 3
  e

ar
th

qu
ak

es

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Years

La
nd

er
s

H
ec

to
r−

M
in

e

e

Reasenberg

G−K

MISD

Fig. 5 Comparison of declustered catalog for southern California, 1984-2003. Graphs (a) to (d): latitude vs time
of occurrence of earthquakes. (a) All earthquakes in the catalogue. (b) Declustered catalogue using the method by

Gardner and Knopoff (1974). (c) Declustered catalogue using the algorithm by Reasenberg (1985). (d) Declustered

catalogue using MISD. (e) Cumulative time series of the three declustered catalogues. The two vertical lines indicate
the time of occurrence of the 1992 Landers and 1999 Hector Mine earthquakes. Taken from Marsan and Lengline

(2008).

5.6 Estimating background rate based on Interevent-Time Distribution

According to the work of Hainzl et al. (2006) the interevent-time distribution of
earthquakes correlates with the level of background activity. Analyses on real seis-
micity, as well as on synthetic seismicity with Poissonian background activity and
triggered Omori-type aftershock sequences, indicate that interevent-times τ can be
approximated by the gamma distribution:

p(τ) = C · τ γ−1 · e−µτ (15)

where p is the probability density function of τ , µ = var(τ)/τ̄ is the background
rate, γ = τ̄ 2/var(τ) is the fraction of mainshocks among all earthquakes, and the
normalizing constant is C = µγ

Γ (γ)
. This approach can be used as an independent,

www.corssa.org
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nonparametric estimation of the background rate.

Although not described in Hainzl et al. (2006), this method can be extended to
decluster earthquake catalogs by means of a thinning procedure. This is done by
comparing p(τ) to the pdf of the background earthquakes alone, i.e., p0(τ) = µe−µτ ,
multiplied by the background fraction. We then obtain for each inter-event time τ a

probability P = γp0(τ)
p(τ)

that τ is a ’normal’ value for two consecutive earthquakes. One

can draw random numbers x uniformly distributed between 0 and 1 and checking
whether x < P or not: that is, whether the second earthquake is a background
earthquake or not. An illustration of this method is given in Figure 6 for southern
California (1984-2002). A feature of this method is that the largest shocks are not
more likely to be kept as background earthquakes than any other shock, since the
thinning procedure is only based on inter-event times and is not conditioned on the
magnitudes.

As a final remark on this method, we point out the fact that the estimate µ can
be obtained with a very simple computation, but it is not the Maximum Likelihood
Estimate given the gamma model of Equation 15. Indeed, for N inter-event times
τ1,...,N characterizing a catalog of total duration T , the log-likelihood is given by

` = − log Likelihood = Nγ

[
1− log(

N

T
γ)

]
+ N logΓ (γ) − γ

N∑
i=1

log τi (16)

where we only kept the terms that depend on parameter gamma. The minimum of
` can be found numerically. A MATLAB code that finds this MLE background rate
is:

function mu=gamma_law_MLE(t);

% finds the Maximum Likelihood Estimate of the background rate mu for

% the earthquake time series t, based on a gamma distribution of the

% inter-event times.

dt=diff(t); I=find(dt>0); dt=dt(I);

T=sum(dt); N=length(dt); S=sum(log(dt));

dg=10^(-4); gam=dg:dg:1-dg;

ell=N*gam.*(1-log(N)+log(T)-log(gam))+N*log(gamma(gam))-gam*S;

[ell,i]=min(ell); gam=gam(i);

mu=N/T*gam;

http://www.corssa.org/glossary/#maximum_likelihood
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Fig. 6 Declustering based on the background estimates by Hainzl et al. (2006) for m ≥ 2.3 earthquakes in southern
California, 1984-2002. (a) Probability density function p(τ) of the inter-event times τ , in blue, compared to the pdf

p0(τ) of a homogeneous Poisson process with rate equal to background rate, times the fraction of background

earthquakes γ, in pink. The ratio of the pink to blue curve gives the probability that the inter-event time can be
kept when declustering. (b) Cumulative time series in blue, and for a realization of a declustered catalog, in pink.

5.7 Declustering based on the coefficient of variation of inter-event times

Also based on inter-event times τ , the method by Bottiglieri et al. (2009) uses
the coefficient of variation of τ . Given a time series of earthquakes, this coefficient

is defined as COV = σ(τ)
τ̄

where σ is the standard deviation. The rationale here
is that the background rate is not easy to estimate (see however the method by
Hainzl et al. (2006), for example), so that we cannot be certain when aftershock
sequences start and end. However, the coefficient of variation must be close to 1 for
a homogeneous Poisson process. The method thus searches for periods during which
COV is less than 1, such periods being characterized by background activity only,
intertwined between earthquake clusters that can be reduced to their mainshock for
the purpose of declustering. An iterative approach that allows precise identification
of the starting time and the duration of a cluster sequence is proposed by Bottiglieri
et al. (2009). This is a slight sophistication to this method to provide a reliable way
for identifying clusters, and can therefore be used for declustering purposes as well.

5.8 Ratios method of Frohlich and Davis (1985)

This method also exploits the inter-event times, but without examining their distri-
bution. Consider a sequence of earthquakes such that Na earthquakes occur exactly

www.corssa.org
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in a time TNa following a given earthquake, and that Nb earthquakes occurred ex-
actly in TNb before it. Under the null hypothesis of a homogeneous Poisson process,

the distribution of the ratio r =
TNa
TNb

is known - it is derived in Frohlich and Davis

(1985). Anomalously small r values indicate that TNa is too short and cannot be ex-
plained by a homogeneous Poisson process, hence one or more of the Na earthquakes
are aftershocks. Interestingly, the r-distribution is independent of the seismicity rate
that characterizes the Poisson process, which is a particularly appealing feature of
this method.

Frohlich and Davis (1985) therefore proposed a simple way to select aftershocks
based on this ratio r: for two successive earthquakes i and j = i + 1 with an inter-
event time τ , compute the ratio r = τ

TNb
with Nb = 5 (or less if there are less than

5 earthquakes in the catalog before i), and check whether r is less than rc or not,
with rc being the r-value that is obtained less than 1% of times in the case of a
homogeneous Poisson process. If r < rc, then one can be 99% confident that j is an
aftershock of i. Frohlich and Davis (1985) provides a table giving the value of rc for
various Nb. In the case of Nb = 5, the 99% confidence level is given by rc = 0.0020.
A MATLAB program that computes rc for any Na, Nb and confidence level follows:

function r=frohlich_davis(Na,Nb,yc);

% compute the r-value such that there is only yc chance of

% obtaining less than this r-value by chance (confidence level

% equal to 1-yc). Cf Table 1 of Frohlich C. and Davis S. (1985),

% Geophys. Res. Lett., 12, 713-716.

r1=10^(-3); r2=Na/Nb+1;

y1=cdf(r1,Na,Nb); while(y1>yc) r1=r1/2; y1=cdf(r1,Na,Nb); end

y2=cdf(r2,Na,Nb); while(y2<yc) r2=r2*2; y2=cdf(r2,Na,Nb); end

while(y2-y1>yc*10^(-3))

r=(r1+r2)/2;

y=cdf(r,Na,Nb);

if(y<yc) r1=r; y1=y; else r2=r; y2=y; end

end

function y=cdf(r,Na,Nb);

y=1-sum(exp(gammaln(Nb+(0:Na-1))-gammaln(Nb)-gammaln(1:Na)...

+(0:Na-1)*log(r)-((0:Na-1)+Nb)*log(1+r)));

As emphasized in Frohlich and Davis (1985), this algorithm will result in 1% of
the earthquakes being marked as aftershocks, even if the time series is actually a
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homogeneous Poisson process.

Originally, this method was developed for studying deep earthquakes, which are
known to generally generate relatively few aftershocks; it is therefore well designed
for analyzing small datasets. While simple to implement, it must then be further de-
veloped to link mainshock - aftershock pairs together when analyzing larger datasets.
As with the other methods using inter-event times, its simplicity must be balanced
by the fact that it does not exploit important information that can be very dis-
criminative when searching for aftershocks - namely: distance to mainshock, and
mainshock magnitude.

5.9 Declustering methods based on correlation metric

Baiesi and Paczuski (2004) proposed a simple space-time metric to correlate earth-
quakes with each other. This distance between shocks i and j > i is defined as

nij = (tj − ti) r
df
ij 10−b mi (17)

where df is the fractal dimension characterizing the distribution of epi- or hypocen-
ters, and b the parameter of the Gutenberg-Richter law. This metric decreases as
the two earthquakes get closer in time and space, and as the first shock i is bigger.
This is equivalent to the ETAS metric, defined as the inverse of the triggering kernel
λij, but here assuming a pure Omori’s law (p-value set to 1) with no cut-off (c-value
set to 0), and a distance dependence that does not account for rupture length.

For any earthquake j, the closest distance nij is sought by examining all preceding
earthquakes i < j. We denote by i? the index i giving this minimum distance, and
by n?j the minimum distance. Linking j to i? is equivalent, for Baiesi and Paczuski
(2004), as linking an aftershock to a mainshock. However, the distribution of n?j
is very wide, with very small values indicating very strong links, and larger values
that are a signature of a weak link. Severing the weak links above a threshold value
n?j > nc separate the earthquakes into distinct clusters. No clear procedure is given
as how to choose nc. Declustering is then simply accomplished by reducing every
cluster to its largest shock.

Elaborating on this, Zaliapin et al. (2008) further defined the rescaled distance
and time as

Tj = (tj − ti?)10−b mi?/2 (18)

Rj = r
df
i?j10−b mi?/2 (19)

www.corssa.org
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A plot of R vs. T for all earthquakes j then makes it possible to identify two
distinct populations. These two populations correspond to the space-homogeneous,
time-stationary Poissonian background seismicity and the clusters characterized by
much smaller time and space inter-event distances. Namely, Zaliapin et al. (2008)
analyzed such plots and found clearly separated populations for a global earthquake
catalog (Figure 7), and for a simulated catalog using the ETAS model. This devel-
opment can be seen as a way to avoid the use of the threshold nc of Baiesi and
Paczuski (2004), which is not strongly constrained.

We provide with the online supplement to this article the contact (email and
website) of the author of this method.
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Fig. 7 Bimodal distribution of for ANSS seismicity catalog between 1981 and 2009 for the CSEP testing region
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6 Final Remarks

This article provides an extended overview and practical and theoretical know-how
on seismicity declustering. Focusing on the most popular seismicity declustering al-
gorithms, we are aware that the list is not complete. We intend to add to this list
in the future, according to new developments and demands.
In this article, we discussed assets and limitations of the presented declustering
codes. However, because of the non-unique nature of seismicity declustering, we
did not make an absolute judgment on the quality of seismicity declustering. Even
though great progress has been made in the last decade, there are still many open
questions, i.e., starting with the physical triggering of earthquakes (aftershocks),
effects of uncertainties in the catalog on the results of declustering, or the effect of
censored data (selection in time, space and magnitude range) on the outcome. In
summary, care should be taken when interpreting results of declustering or results
that depend on a declustered catalog, because these results cannot reflect the exact
nature of foreshocks, mainshocks and aftershocks; indeed the exact nature of these
events may not exist at all!

7 Software

The online supplement to this article provides various codes, or if not available,
contact information for the authors of the codes.
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