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Abstract Starting from basic simulation procedures for random variables, this ar-
ticle presents the theories and techniques related to the simulation of general point
process models that are specified by the conditional intensity. In particular, we focus
on the simulation of point process models for quantifying the characteristics of the
occurrence processes of earthquakes, including the Poisson model (homogeneous or
nonhomogeneous), the recurrence (renewal) models, the stress release model and
the ETAS models.

1 Introduction and motivation

This article will describe the procedure of simulation: that is, creating a ‘synthetic’
earthquake catalog (or parts of the data for such a catalog) based on some model of
how the earthquake process works. A simulation provides a concrete example of the
abstract process that the model is describing, which may be designed and calibrated
to represent a particular real catalog, or may be a theoretical model set up for some
other purpose. This example of the process—the synthetic catalog—is referred to
as a ‘realisation’ of the model.

In abstract terms, a real earthquake catalog may be considered a realisation of
the underlying stochastic processes governing earthquake occurrence. We do not
know for certain what those are, but we build models to represent our reasoned hy-
potheses, knowing that there are fundamental limitations to their ability to reflect
real processes, but knowing that they can still be useful in explaining earthquake
patterns and making predictions despite these limitations. The process of going
from a data set to the model parameter values that best explain it is referred to as
‘inference.’ Simulation is conceptually the opposite of that process: it takes a pa-
rameterised model and produces a data set (or several different data sets) consistent
with that model.

Simulation has become a widely used tool for research, as computing power has
increased to allow extensive simulations to be carried out. In many cases having a
realisation—or many realisations—of a model makes it considerably easier to analyze
the properties of the model, such as the uncertainty in an event rate predicted by the
model, or the dependence of some quantity on the model parameters. Rather than
only treating the model analytically as a set of equations, running simulations allows
us to explore the model “experimentally,” and, provided the simulation is done
correctly, it can quickly and easily answer questions that an analytical treatment
alone cannot.

Simulation has many uses; perhaps the most obvious application is in attempting
to reproduce the earthquake occurrence pattern of a particular catalog: synthetic
versions of a catalog can be compared with the real one visually (through plotting
graphs) and mathematically (through calculation of various properties), to assess

http://www.corssa.org/glossary/#earthquake_catalog
http://www.corssa.org/glossary/#stochastic
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how well the model describes the data. Another important application is in under-
standing the properties of the model itself, and their sensitivity to input parameter
values; or testing the effectiveness of techniques for estimating those parameters—
the benefit of testing on a synthetic catalog being that you know what the true
parameter values are. Both of these applications can involve ‘bootstrapping’: run-
ning lots of simulations (that differ only in terms of each being a different realisation
of the same random process) to determine some average properties as well as confi-
dence limits for those properties.

You may also glean new insights into your catalog through looking at a synthetic
one, assuming those insights are applicable back to the real data. For example, when
simulating a model such as ETAS (see, e.g., Zhuang et al. 2012, for the definition and
properties of the ETAS model) where events can trigger other events (aftershocks),
it is possible to keep track of the ‘family’ structure of the data set (in the sense
of ‘parent’ events triggering ‘offspring’ aftershocks)—something we can never be
certain of in real data. This allowed, for example, the discovery of the origin of the
bimodality (two peaks) in the distribution of inter-event times: as shown in Touati
et al. (2009), the two peaks arise from (1) pairs of events that both belong to the
same aftershock sequence, and (2) pairs of events that are not related to each other.
Depending on the relative sizes of these two contributions, a range of shapes for the
overall distribution can be observed, but the underlying reason for these shapes is
quite simple and was discovered by looking at synthetic catalogs.

A more important usage of simulation is forecasting. Suppose that you have
constructed a reasonably good model for describing the occurrence process of earth-
quakes. With the observation of earthquakes and other related geophysical or geo-
chemical observations, you can use the model to simulate the seismicity in a certain
future period, for example, tomorrow or next month. Such a simulation can be done
many times, and the probability that a large earthquake will occur in a given space-
time window can be approximated by the proportion of simulations with such an
event happening.

1.1 Starting point

You will perhaps have read some of the Theme V CORSSA articles on seismicity
models, or otherwise be familiar with some of these models. You want to simulate
some of these models, perhaps by using available software, and you need (or wish
to have) a fuller understanding of how they work, from basic principles. Or perhaps
you want to understand the principles of simulation in order to apply these methods
to simulating a model of your own design.

http://www.corssa.org/glossary/#random
http://www.corssa.org/glossary/#mean_(average)
http://www.corssa.org/glossary/#epidemic_type_aftershock_sequence_(ETAS)
http://www.corssa.org/glossary/#aftershock
http://www.corssa.org/articles/themev/
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1.2 How the article is structured

Section 2 introduces a couple of common basic methods for sampling from prob-
ability distributions, which are the building blocks for the methods in the rest of
the article. Section 3 shows how these methods apply to temporal point processes, a
class of models that encompasses a large number of the seismicity occurrence models
in the literature. The remaining sections apply the principles learnt to various as-
pects of seismicity modelling: section 4 discusses simulation of common magnitude
and moment distributions; section 5 applies the point process simulation methods
to models such as the Epidemic-Type Aftershock Sequences (ETAS) and the Stress
Release models (combining point process simulation with independent magnitude
sampling to produce synthetic earthquake catalogs); section 6 deals with models in
which the spatial aspect is dealt with by the partitioning of space into interacting
sub-regions; and section 7 looks at models that include full spatial coordinates for
events, including a challenging case where the probability distributions for the mag-
nitude, location and occurrence time are not independent. Section 9 gives a brief
look at some of the applications for the results of simulations, and section 10 notes
some existing software that readers may wish to access and use.

1.3 A note on the use of symbols

We use the following rules of thumb for our choice of symbols in the text:

– Upper case letters are usually used to represent particular (definite) values of
a random variable, while the corresponding lower case letters represent possible
values of those variables

– x and y are used for generic variables
– x1, x2 and x3 are also used for spatial coordinates
– r and R are used to represent distance (the variable and variate, respectively)
– R is also used in some instances to denote a particular region by a single symbol
– t is used to represent an instance in time, whereas τ is used to represent a time

interval
– v is used as a dummy integration variable
– U represents a uniform random variate
– m is used for earthquake magnitude, whereas M is used for seismic moment

2 Basic simulation: simulating random variables

The essence of simulating from a stochastic model—that is, a model containing some
randomness—is sampling from the probability distributions that describe that ran-
domness. This gives a realisation of the random process. In this section we describe

http://www.corssa.org/glossary/#point_process
http://www.corssa.org/glossary/#magnitude
http://www.corssa.org/glossary/#synthetic_earthquake_catalog
http://www.corssa.org/glossary/#seismic_moment
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the two key methods for performing the sampling: the inversion method and the
rejection method.

2.1 The inversion method

The inversion method, or ‘inverse transform sampling,’ is a common method usually
used for simulating a continuous random variable. It involves firstly obtaining the
cumulative distribution for the variable to be sampled: this is defined as the prob-
ability of that variable being less than or equal to a given value, and so it starts
from 0 at the variable’s lowest possible value and increases to 1 at the maximum
possible value. It is obtained by integrating the probability density function (pdf)
with respect to the variable you want to sample. Secondly, this cumulative distri-
bution is rearranged to give an expression for the variable of interest in terms of its
probability (rather than the other way around), and thirdly, the variable can then
be sampled by inserting uniform random values between 0 and 1 into this expression
in place of the cumulative probability.

More formally:

Algorithm 1 Simulate a continuous random variable using the inversion method
Suppose that X has a monotonically increasing cumulative distribution function

F (x).

Step 1. Obtain a random variate U , uniformly distributed in [0, 1].
Step 2. Let X = F−1(U), where F−1(·) is the inverse function corresponding to
F (·), i.e., F (X) = U .

A proof of this is detailed in Appendix A.

The above algorithm can be modified to simulate discrete random variables as
follows:

Algorithm 2 Simulate a discrete random variable
Suppose X is a random variate, with probability mass function p(xi), i = 1, 2 · · · .
Step 1. Obtain a random variate U , uniformly distributed in [0, 1].

Step 2. Let X = xj, where j satisfies
∑j

i=1 pi(xi) 6 U <
∑j+1

i=1 p(xi).

Simple example: In a Poisson process, the time intervals between the events are all
independent, and follow an exponential distribution (see Zhuang et al. 2012 and
references therein). Simulating a Poisson process is therefore a matter of repeatedly
drawing the time interval τ to the next event from an exponential distribution:

f(τ) = λ e−λτ (1)

http://www.corssa.org/glossary/#Poisson_distribution
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where λ is the event rate of the Poisson process, and τ can only be positive. Conve-
niently, the technical name for this single parameter λ of an exponential distribution
is the ‘rate’ parameter.

The cumulative distribution function is obtained by integration:

F (τ) =

∫ τ

0

f(v) dv = 1− e−λτ (2)

We obtain the inverse, F−1(·) = τ , by simply rearranging:

τ = −1

λ
log[1− F (τ)].

Thus, to generate a random variate T from this exponential distribution with a rate
parameter λ, simply let T = − 1

λ
log(1 − U), where U is uniformly distributed in

[0, 1] — This is equivalent to T = − 1
λ

logU , since, if U is uniformly distributed in
[0,1], so is 1− U .

The above simple example serves to illustrate the procedure; in reality most
software packages will have a convenient function to sample randomly from an ex-
ponential distribution, requiring you only to pass in the parameter λ and not to go
through all the steps above for this simple case. In R, this function is rexp, and, in
Matlab, exprnd. But the underlying code is usually an implementation of the inver-
sion method as outlined here. When you need to sample non-standard distributions,
you may need to implement the inversion method from scratch, following steps as
shown above. The following longer example is a case such as this.

More complex example: The following probability density is often used in the sim-
ulation of the positions (X, Y ) of the direct aftershocks by an ancestor event at
(x0, y0) (see, e.g, Console et al. (2003)):

fXY (x, y) =
q − 1

π

d2(q−1)

[(x− x0)2 + (y − y0)2 + d2]q
, q > 1, (3)

where d and q are the constant parameters. To simplify the simulation, we use the
polar coordinate instead, through the following transformation:{

X = x0 +R cosΘ
Y = y0 +R sinΘ.

(4)

The joint p.d.f. of R and Θ is

fRΘ(r, θ) = fXY (x0 + r cos θ, y0 + r sin θ)

∣∣∣∣ ∂X∂R ∂X
∂Θ

∂Y
∂R

∂Y
∂Θ

∣∣∣∣
R=r,Θ=θ

=
(q − 1) d2(q−1)

π

r

r2 + d2
.
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where the appearance of the Jacobian | · | is due to coordinate transformation.
fRΘ(r, θ) can be split into the product of two independent probability densities,

fR(r) = (q − 1) d2(q−1) 2r

r2 + d2
, r ≥ 0, (5)

and

fΘ(θ) =
1

2π
, θ ∈ [0, 2π].

In the latter, θ does not appear on the right-hand side at all, meaning that the
aftershock distribution is isotropic around the triggering event. The form of FR(r)
implies that the probability of aftershocks falls away with increasing distance r, as
a power law.

To obtain the cumulative probability function of R, integrate (5) with respect to
r:

FR(r) = (q − 1)d2(q−1)

∫ r

0

2u

(u2 + d2)q
du

= 1−
(

1 +
r2

d2

)1−q

(6)

The next step is rearranging equation 1−FR(R) = U to get an expression for R:

R = d

√
U

1
1−q − 1 (7)

where U is a uniform-random number between 0 and 1. Θ can be generated as
uniform random numbers in [0, 2π]. Using transform (4), we can obtain the required
position of the aftershock.

2.2 The rejection method

The rejection method is useful for simulating a random variable, say x, which has
a complicated density function f(x) making it difficult to obtain the cumulative
distribution by integration. Instead of generating X directly, we generate another
random variate Y which has a simpler density function g(x) such that f(x) < B g(x),
where B is a positive real number greater than 1. (g(·) may be sampled using the
inversion method above.) Then X can be generated as follows:

Algorithm 3 Simulate random variables using the rejection method

Step 1. Generate a random variate Y from density g(·) and a random variate U
uniformly distributed in [0, 1].

Step 2. If U < f(Y )
Bg(Y )

, accept X = Y ; otherwise, back to Step 1.
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Thus we sample from g(x), but insert the sampled values into f(x) as a ‘check.’
With the method outlined above, at values of x where f(x) is much smaller than
g(x), the probability of acceptance of variates generated from g(x) is suitably de-
creased, such that the set of accepted variates is eventually distributed according to
f(x). A formal proof of this is detailed in Appendix B.

An advantage of the rejection method is that, even if we only know f(x) = Cq(x),
where q(·) is a known nonnegative function and C is an unknown positive constant,
we can still simulate a random variate with a p.d.f. of f(·). This method is extremely
useful for complex and high-dimensional cases, where the normalising factors for
p.d.f.s are difficult to obtain. The following example deals with just such a case
where f(x) ∝ g(x).

Illustrative example: Suppose we want to simulate a 3D random variable uniformly

distributed in the unit ball within R3. The density function of the target random
variable is:

f(x1, x2, x3) =

{
3/(4π), x2

1 + x2
2 + x2

3 ≤ 1;
0, otherwise.

In words: the density function has a constant value (3/(4π)) within a sphere of
radius 1 centred on the origin, and is 0 everywhere outside of this sphere.

To simulate from this distribution, we can first generate three 1D random vari-
ates, X1, X2 and X3, all uniformly distributed in [−1, 1]. These samples effectively
come from a distribution g(x1, x2, x3) that takes the constant value 1/8 when x1,
x2, and x3 are all in [-1,1], and 0 otherwise. This is also a uniform distribution,
but is simpler than f(·) because the conditions on the values of x1, x2, and x3 are
expressed as three independent constraints, and thus these variables can be sampled
separately, unlike f(·) which has one condition expressed in terms of a combination
of the variables. It represents the smallest possible cube surrounding the unit sphere
we want to sample from. It is clear from the outset that we should accept the sample
if it lies within the sphere and reject it otherwise, i.e., accept it if X2

1 +X2
2 +X2

3 ≤ 1.
This straightforward approach would solve the problem; however, we pursue the
steps of the rejection method explicitly here for illustration purposes.

The value of g(x) within the sphere (= 1/8) is lower than that of f(x) (= 3/(4π)),
so we need to choose a value for the factor B that will make B × g(x) greater
than 3/(4π)—say, 3. We can then accept X = (X1, X2, X3) as a sample from f(x)
if U < f(X1, X2, X3)/[3 × g(X1, X2, X3)], having generated a random variate U
uniformly in [0, 1]. This condition will always be false where f(x) = 0, i.e., outside
the sphere, and thus points outside the sphere will always be rejected. Points inside
the sphere will be accepted with probability 3

4π
/(B × 1

8
) (with B = 3).

This simple example shows the effect of the value of B: the higher this value
is, the more points will be rejected. In this particular example, we can see that
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it is not necessary to reject any of the points generated inside the sphere, as the
probabilities f(·) and g(·) are both uniform. Indeed if we set B to be as low as
3/(4π)×8, the probability of acceptance reaches 1 within the sphere, and we will no
longer reject any points unnecessarily. (At this point, the generation of U becomes
unnecessary altogether since f(X1, X2, X3)/[B × g(X1, X2, X3)] can only be 0 or
1—the acceptance or rejection of a given sample is now completely deterministic.)
More generally, though, if g(·) is not proportional to f(·), it will not be possible to
achieve this situation, but by choosing the lowest B we can find such that B× g(x)
is always greater than f(x), we will maximise the efficiency of the sampling for the
given g(x).

Another key observation here is that the choice of the ‘envelope’ density, g(·),
is critical: if the shape of g(·) differs too much from f(·), then a large B will be
required to ensure f(x) < B g(x) for all x, and thus the overall fraction of samples
being rejected will be high. An efficient choice for g(·) is not always easy to find,
especially when f(·) is highly concentrated in a certain region or has a spike at some
location. This problem can be solved using an adaptive extension, i.e., using a set
of piecewise envelope distributions.

2.3 Alternatives

The inversion and rejection methods are two standard methods for generating ran-
dom variates, but they are not always the easiest or quickest. For example, to gen-
erate a beta distribution with an integer degree of freedom (m,n), i.e., f(x) =
xm−1(1− x)n−1/B(m,n), where B(m,n) is the beta function, it is better to use the
connection between the beta distribution and the order statistics of the uniform
distribution:

Algorithm 4 Generate a random number from the Beta distribution

Step 1. Generate m+ n− 1 random variates U1, U2, · · · , Um+n−1.
Step 2. Sort U1, U2, · · · , Um+n−1 in ascending order, and denote the new sequence

by U(1), U(2), · · · , U(m+n−1).
step 3. Let X = U(m).

The specific simulation methods for many other basic probability distributions
can be found in standard textbooks on basic probability theory, e.g., Ross (2003).

Having covered the two basic techniques for simulation now, the next section ex-
tends these methods into the realm of temporal point process models—a cornerstone
of earthquake occurrence modelling.

http://www.corssa.org/glossary/#deterministic
http://www.corssa.org/glossary/#degree_of_freedom
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3 More advanced simulations: simulating temporal point processes

The Poisson process, seen in the simple example of section 2.1, is the simplest of
temporal point processes. In general, point processes are specified by their condi-
tional intensity function λ(t), which can be thought of as analagous to the rate
parameter λ of the exponential distribution that describes time intervals between
events in the Poisson process. The conditional intensity also plays the same role as
the hazard function for estimating the risk of the next event.

In this section, we discuss simulation of temporal point process models, building
on the methods introduced in the previous section.

3.1 Using the inversion method

The simple example in section 2.1 shows how to use the inversion method for simu-
lating a Poisson process with rate λ through generating the waiting times between
successive events. The inversion method can also be used for more general temporal
point processes.

Recall the definitions of the cumulative probability distribution function, the
probability density function, the survival function and the hazard function corre-
sponding to the waiting time to the next event (from a certain time t) discussed in
the CORSSA article by Zhuang et al. (2012), which are, respectively,

Ft(τ) = Pr{from t onwards, waiting time to next event ≤ τ }, (8)

ft(τ) dτ = Pr{from t onwards, waiting time is between τ and τ + dτ }, (9)

St(τ) = Pr{from t onwards, waiting time > τ }
= Pr{no event occurs between t and t+ τ}
= 1− Ft(τ), (10)

and

ht(τ) dτ = Pr{next event occurs between t+ τ and t+ τ + dτ

| it does not occur between t and t+ τ .}. (11)

If any of Ft, St and ft is given, the waiting time from t to the occurrence of
the next event in the process could be simulated in the same way as was shown
for the Poisson process. When only the conditional intensity λ(t) of the model
is provided, the simulation could be done by converting the conditional intensity
to the probability distribution function Ft. Consider the equivalence between the
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conditional intensity and the hazard function, i.e., λ(t+ τ) = ht(τ), τ > 0, and the
relation between the hazard function and the probability distribution function

ht(τ) = − d

dτ
[log(1− Ft(τ))]. (12)

Then the distribution of waiting times could be solved:

Ft(τ) = 1− exp

[
−
∫ t+τ

t

λ(v) dv

]
.

The above equation enables us to use the inversion method to simulate temporal
point processes. Compare with equation (2): the two are very similar, except that
in this case, the rate is not a constant parameter but a more complex function of
time that must be integrated.

Algorithm 5 The inversion method for simulating a temporal point process
Suppose that we are simulating a temporal point process N described by a condi-

tional intensity λ(t) in the time interval [tstart, tend] for all t ∈ [tstart, tend].

Step 1. Set t = tstart, and i = 1.
Step 2. Generate a random variate U uniformly distributed in [0, 1].

Step 3. Find t′ by rearranging U = exp
[
−
∫ t′
t
λ(v) dv

]
.

Step 4. If x < tend, set ti+1 = t′, t = t′, and increment i by 1; return to step 2. (t
refers to the current time, whereas ti refers to the time of event i.)

Step 5. Output {t1, t2, · · · , tn}, where tn is the last generated event before tend.

In most cases, t′ in Step 3 may be hard or even impossible to solve analytically. To
avoid this issue, the following thinning method is introduced.

3.2 Using the thinning method

It is also possible to apply an analogue of the rejection method (section 2.2) to
temporal point processes. This is known as the thinning method. It works in a
similar fashion to the simulation of a Poisson process, by generating waiting times
sampled from an exponential distribution, as in the simple example in section 2.1 but
with an extra ‘rejection’ step. For a point process the conditional intensity λ(t)—the
equivalent of the constant rate parameter of the Poisson process—is now a function
of time and of the history of the process, and so its value varies from moment to
moment.

Algorithm 6 The thinning method for simulating temporal point process (Ogata
1981)
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Suppose that we are simulating a temporal point process N described by a condi-
tional intensity λ(t) in the time interval [tstart, tend]. Suppose we can find a positive
number B such that λ(t) 6 B for all t between tstart and the occurrence time of the
next event.

Step 1. Set t = tstart, and i = 0.
Step 2. Simulate a waiting time, τ , according to a Poisson process of rate B, i.e.,
τ ∼ Exp(B).

Step 3. Generate a random variate U ∼ Uniform(0, 1).
Step 4. If U ≤ λ(t + τ)/B, set ti+1 = t + τ , t = t + τ and i = i + 1. Otherwise,

only set set t = t+ τ .
Step 5. Return to step 2 until t exceeds tend.
Step 6. Return t1, t2, · · · , tn.

In Step 2, in the case of a model with decreasing intensity after an event (such as
ETAS, see, e.g., Zhuang et al. 2012 or Section 5.4 in this article, for the explanation
of this model), B can be the conditional intensity at time t, λ(t).

The actual distribution requiring to be sampled from at each time t is locally
an exponential, but its rate, the conditional intensity, is non-stationary in time.
Given that what we are sampling is time intervals, the non-stationarity cannot be
ignored, and we cannot sample it directly but must instead sample from an envelope
distribution and apply a rejection, with probability as calculated above. A formal
proof of this algorithm is given in Appendix C.

The above thinning method thus has some resemblance to the rejection method
(section 2.2) with an exponential ‘envelope’ distribution; however, there are some
significant differences. First of all, the rejection method is used for simulating indi-
vidual random variates, while the thinning method is used for simulating a process,
i.e., a random finite subset of points on the target time interval, where the points
in the subset can be either independent of or dependent on each other. When using
the rejection method, once a sample is rejected, the simulation is started over from
the beginning again. In the thinning method, the sampling of the next event starts
from the location of the last event generated, no matter whether it is rejected or
accepted.

The algorithm above is suitable for models built around the concept of after-
shock triggering, such as ETAS (which implements the Omori law). The conditional
intensity is decreasing or bounded between two neighbouring events, so it is quite
easy to find a suitable value of B in step 2: we can use the value of the conditional
intensity at the current event, knowing that the intensity will only decrease with
time until another event occurs. We don’t need to know in advance when the next
event will occur. Having established a provisional time ti+1 for the next event by
sampling from the envelope distribution, the conditional intensity at ti+1 is checked;

http://www.corssa.org/glossary/#stationary
http://www.corssa.org/glossary/#Omori-Utsu_relation
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the new event is then either created or not created, with a probability that is the
ratio of the later conditional intensity to the earlier one.

But for models in which λ(t) increases boundlessly between events (such as SRM,
see, e.g., Zhuang et al. 2012 or Section 5.3 for definition of this model), this algorithm
is not easy to apply. The maximum value that the conditional intensity reaches
before the next event depends on the precise timing of the next event, which is
unknown in advance. However, if an upper bound for λ(t) can be determined within
some precise time interval ∆ (not necessarily the interval to the next event), this
can be taken advantage of, as in the following algorithm.

Algorithm 7 The modified thinning method (Daley and Vere-Jones 2003)
Suppose that we simulate a temporal point process N equipped with a conditional

intensity λ(t) in the time interval [tstart, tend].

Step 1. Set t = tstart, and i = 0.
Step 2. Choose a positive number ∆ ≤ tend − t, and find a positive B such that
λ(t) < B on [t, t+∆] under the condition that no event occurs in [t, t+∆].

Step 3. Simulate a waiting time, τ , according to a Poisson process of rate B, i.e.,
τ ∼ Exp(B).

Step 4. Generate a random variate U ∼ Uniform(0, 1).
Step 5. If U ≤ λ(t + τ)/B and τ < ∆, set ti+1 = t + τ , t = t + τ and i = i + 1.

Otherwise, set t = t + min(τ,∆)—i.e., reject the event and move on in time
anyway.

Step 6. Return to step 2 if t does not exceed tend.
Step 7. Return {t1, t2, · · · , tn}, where n is sequential number of the last event.

In Step 2, if λ(t) is an increasing function, the value of ∆ could be chosen in a
way such that ∆ ≈ 1/λ(t) ∼ 10/λ(t).

Having covered the essential simulation techniques in these last two sections, the re-
mainder of the article demonstrates their application to specific earthquake-related
models. New techniques are introduced along the way as needed, that are either built
on the above methods or are simpler techniques worth knowing about for special
cases.

4 Simulation of earthquake magnitudes, moments, and energies

The distribution of earthquake magnitudes is usually implemented as one of the
following: (a) the Gutenberg–Richter (G–R) magnitude-frequency relation, (b) the
tapered exponential distribution, and (c) an empirical distribution. This section
briefly explains how to simulate earthquake magnitudes according to the above
three cases.
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4.1 Simulation based on the G-R magnitude frequency relation

The G-R magnitude frequency relation states

log10N(> m) = a+ bm (13)

for the earthquakes from a particular region in a given time period, where log10N(>
m) is the logarithm of the number of events of magnitude greater than or equal to
m, a and b are constants, and b is the so-called G–R b-value. This empirical law
can be translated into probability language: the magnitude distribution of these
earthquakes has an exponential probability density function

f(m) = β e−β(m−m0); m > m0 (14)

if we only look at the events of magnitude greater than m0. The value β is linked
with the G–R b-value by

β = b ln 10. (15)

The a parameter in Gutenberg–Richter scales the curve to reflect absolute rates of
events; this information is not contained in the p.d.f. for a given event’s magnitude
(equation (14)), which is concerned only with capturing the relative rates of events
of different sizes.

We have already seen how to sample from an exponential distribution in the
simple example of section 2.1, for the inter-event times in a Poisson process. If we
change variables to m′ = m − m0, simulating the magnitude with the inversion
method follows the exact same procedure as that example. The cumulative function
is F (m′) = 1 − e−βm

′
; generate a uniform random variate U in [0, 1] and then let

m′ = − 1
β

logU , and finally, convert back to m = m′ +m0.

An exponential law for the magnitude distribution corresponds to an inverse
power law (also called the Pareto distribution) for the earthquake energy, moment,
or Benioff strain, i.e.,

Pr{seismic moment > M} = CM−α, for α > 0, M > 0. (16)

Simulation of such a distribution can be similarly done through the inversion method.
A shortcoming of using the p.d.f. in equation (14) is that the maximum expected

magnitude increases to infinity when the total number n of samples increases to
infinity. This is obviously unphysical (although in finite simulations of magnitudes
it may not be a problem). To avoid this eventually unbounded maximum magnitude,
some researchers simply truncate the distribution at some maximum magnitudemM :

f(m) =

{
β e−β(m−m0)

1−e−β(mM−m0)
, m0 6 m 6 mM ;

0, otherwise.
(17)
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To simulate with this truncated distribution, we would repeat the same steps as for
the non-truncated distribution and then only accept the sample if it is less than
mM .

4.2 Simulating from the tapered Pareto (Kagan) distribution

In reality, the frequency-magnitude relation is likely to have a more gradual roll-
off at large magnitude. Kagan and Schoenberg (2001) suggested the tapered Pareto
distribution for describing earthquake moments, which takes the form

Pr{seismic moment > M} =

(
M

M0

)k
exp

(
M0 −M
Mc

)
(18)

with a density function

f(M) =

(
k − 1

M
+

1

Mc

)(
M

M0

)k
exp

(
M0 −M
Mc

)
, (19)

where M0 is the energy corresponding to the threshold magnitude m0, and Mc is
the corner moment.

This is essentially a power-law distribution in the seismic moment (corresponding
to the usual exponential in the magnitude), with an exponential roll-off at large
M . This distribution could be simulated using the inversion or rejection methods.
However, Vere-Jones et al. (2001) suggested a simpler method, taking advantage of
the order statistics between exponential and Pareto random variables:

Algorithm 8 Simulate the Kagan distribution

Step 1. Simulate X and Y from an exponential distribution with rate 1/Mc and a
Pareto distribution with a survival function yk/Mk

0 , respectively.
Step 2. min{X, Y } is the required random variate.

In terms of magnitudes, the Kagan distribution for seismic moment corresponds
to a tapered exponential distribution

Pr{magnitude > m} = exp
{
−β(m−m0)− γ eδ(m−mc)

}
, for m > m0, (20)

where γ and δ are positive constants. Such a distribution can also be simulated by
using the order statistics between an exponential and a double exponential random
variables, i.e., the smaller one between two random variables from distributions
whose survival functions are exp [−β(m−m0)] and exp

[
−γ eδ(m−mc)

]
.
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4.3 Simulating magnitudes by random resampling

Simulation from the magnitude distributions above requires that the parameters
of a given distribution must already be estimated or known. When the parameters
from a certain region are unknown and we have the earthquake catalog from this
region, we can use a simple resampling method:

Algorithm 9 Resample magnitudes from existing catalog
Suppose that the magnitudes in the catalog are {mi : i = 1, 2, · · · , N}.

Step 1. Generate a random variate, U , uniformly distributed in (0, N).
Step 2. Return m

[U+1]
as the required magnitude, where [x] represents the largest

integer less than x.

5 Simulation of specific temporal earthquake models

5.1 Poisson processes

The humble Poisson process can describe a declustered catalog, or perhaps a record
of the very largest events worldwide, and its simulation was covered as an example
in section 2.1. However, we include here an alternative method for simulating a
Poisson process, for the sake of completeness:

Algorithm 10 Alternative method for a stationary Poisson process
Suppose that a stationary Poisson process with rate λ is to be simulated within

the time interval [tstart, tend], tstart < tend.

Step 1. Generate a Poisson random variate N with a mean of λ(tend − tstart), to
represent the total number of events occurring in [tstart, tend];

Step 2. Generate the times of the N events, uniformly distributed in [tstart, tend].

From the viewpoint of computing, this method is not so efficient, since simulating a
Poisson random variable takes a much longer time than simulating an exponential
random variable. However, most high level computing languages have provided in-
terfaces for generating Poisson random variables, for example, poissrnd in Matlab
and rpois in R.

This method can also be combined with rejection for simulating a non-stationary
Poisson process (which might be used to represent the background process after
declustering of a non-stationary catalog, for example due to volcanic or fluid-driven
processes):

Algorithm 11 simulate a non-stationary Poisson process using the rejection/thinning
method

Suppose that the rate of the process is λ(t) and that this rate has an upper bound
of B (a positive, real number).

http://www.corssa.org/glossary/#decluster
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Step 1. Generate N according to a Poisson distribution of mean B (tend − tstart).
Step 2. Generate N events t1, t2, · · · , tN uniformly over [tstart, tend].
Step 3. For each i = 1, 2, · · · , N , independently generate a uniform random variate
Ui, and accept ti if Ui 6 λ(ti)/B; otherwise, reject ti.

Thus, some events are rejected, and the acceptance level depends on the value of
the rate at the time of each event, λ(ti). The accepted events form a non-stationary
Poisson process with rate λ(t). This can also suffer from inefficiency: especially when
the values of λ(t) are generally quite small outside of some particular periods where
λ(t) is large, and most generated events in the envelope process will be rejected. In
this case, a better approach may be to divide the whole target interval into many
small intervals, find the upper bounds of λ(t) on each interval, and then apply the
above algorithm to each interval.

The Omori-Utsu law for aftershock occurrence (or Reasenberg–Jones model),

λ(t) =
K

(t+ c)p
, (21)

where t is the time since the mainshock, and K, c and p are constants (e.g., Zhuang
et al. 2012 for details), can be simulated using the above algorithm. The algorithm
can be also easily generalized to spatiotemporal Poisson processes, and can be im-
plemented in parallel computing.

5.2 Renewal models

A renewal model can be thought of as a generalisation of the Poisson process, but
with inter-event times that have a specified distribution—not necessarily exponen-
tial. Given the p.d.f. of inter-event times, say f(τ), simulating a renewal model is
quite straightforward as for the Poisson process: simulate the waiting times (inde-
pendently), and then set the event times accordingly. In other words, first simulate
a group of random variates from f(τ), T1, T2, · · · , Tn, and then let the occurrence
times in the simulated process be {t1, t2, · · · tn} with t1 = T1, t2 = t1 +T2, · · · , tn =
tn−1 + Tn.

The only tricky thing is that the whole process usually does not start at the
occurrence time of an event. Thus, the first time interval should be simulated ac-
cording to the distribution of the forward occurrence times (see Zhuang et al. 2012),
whose p.d.f. is

wf (τ) =
1− F (τ)∫∞

0
v f(v) dv

, (22)

provided that a finite mean of the waiting times exists.

http://www.corssa.org/glossary/#mainshock
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5.3 Stress release models

The Stress Release Model is based on the idea that earthquakes occur when elastic
stress accumulates to a critical level, and takes time to build up again afterwards.
The conditional intensity of a Stress Release Model takes the form

λ(t) = exp [a+ b t− c S(t)] , (23)

(e.g. Zhuang et al. 2012) where

S(t) =
∑
i: ti<t

100.75mi

represents the total Benioff strain released by previous earthquakes, and a, b, and c
are constants.

The survival function (see equation (10)) for the distribution of waiting times to
the next event from t is

St(τ) = exp

[
−
∫ t+τ

t

ea+b v−c S(v) dv

]
= exp

[
−ea−c S(t)

b

(
eb(t+τ) − ebt

)]
.

Because St(·) = 1−Ft(·), replacing Ft(·) with a uniform random number between 0
and 1 is equivalent to replacing St(·) with such a random number. Thus, to simulate
the waiting time using the inversion method, let St(τ) = U , where U is a random
variate uniformly distributed in [0, 1]. Then

τ =
1

b
log

[
−b logU

ea−c S(t)
+ eb t

]
− t (24)

The magnitudes of simulated earthquakes could be generated by using the meth-
ods in section 4.

The Stress Release Model could also be simulated using the modified thinning
algorithm as follows: Suppose that at the starting time t, the conditional intensity
is λ(t). As discussed in Section 3.2, if λ(t) is an increasing function between two
neighbouring events, ∆ could be chosen between 2/λ(t) and 10/λ(10) in order not
to get ∆ too small or B too big. Here we can simply set ∆ = 2/λ(t) and B =
λ(t) ∗ e2b/λ(t), and then follow the modified thinning method (section 3.2).

5.4 Temporal ETAS models

The ETAS model (Zhuang et al. 2012) has a conditional intensity of the form

λ(t) = µ+
∑
i: ti<t

κ(mi) g(t− ti) (25)

http://www.corssa.org/glossary/#stress
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where
κ(m) = A eα(m−m0), m > m0,

g(t) =
p− 1

c

(
1 +

t

c

)−p
,

m0 being the magnitude threshold.
Simulation of ETAS was loosely described in words in section 3.2 in introducing

the thinning method. More formally, the process is as follows:

Algorithm 12 The thinning algorithm applied to the ETAS model
Suppose that we have observations {(ti,mi) : i = 1, 2, · · · , K} up to time tstart

and we want to simulate the process forward into the time interval [tstart, tend].

Step 1. Set t = tstart, k = K.
Step 2. Let B = λ(t).
Step 3. From time t, simulate the waiting time to the occurrence of the next event,

say τ , according to a Poisson process with rate B. This can be done by simulating
from an exponential distribution using the inversion method, as in the simple
example of section 2.1.

Step 4. If t+ τ > tend, go to Step 8.
Step 5. Generate a uniform random variate U in [0, 1].
Step 6. Set tk+1 = t + τ , generate the magnitude mk+1 according to the methods

given in section 4, and let k = k + 1, if U < λ(t + τ)/B; otherwise, reject the
sample.

Step 7. Set t = t+ τ regardless and go to Step 2.
Step 8. Append newly accepted events {(ti,mi) : i = K + 1, K + 2, · · · } to the

catalog.

An implementation of this method is contained in the PtProcess package of SSLib,
written in R (Harte 2012).

There are two equivalent ways of looking at the ETAS model. Thus far, we
have treated it as a single point process, with the probability of an event at each
point in time reflected in the conditional intensity—which contains a component
of ‘background’ and a component of ‘triggered’ seismicity contributed by all past
events in the history of the process. The ETAS model is also a branching model;
it is mathematically equivalent to consider each event as belonging to one of two
processes, the background and the aftershocks. Each background event results in a
cascade of triggering—direct aftershocks, aftershocks of those aftershocks, and so
on. Thus it is possible to simulate the background events as a Poisson process, and
then recursively simulate the aftershocks resulting from each of these background
events in turn. Finally, all events are combined and put into the correct temporal
order of occurrence.
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Algorithm 13 Simulating the ETAS model as a branching process (see, e.g., Zhuang
et al. 2004; Zhuang 2006, 2011)

Suppose that we have observations {(ti,mi) : i = 1, 2, · · · , K} up to time tstart
and we want to simulate the process forward into the time interval [tstart, tend].

Step 1. Generate the background catalog as a stationary Poisson process with the
estimated background intensity µ in [tstart, tend], together with original observa-
tions {(ti,mi) : i = 1, 2, · · · , K} before tstart, recorded as Generation 0, namely
G(0).

Step 2. Set ` = 0.

Step 3. For each event i, namely (ti,mi), in the catalog G(`), simulate its N
(`)
i

offspring, namely, O
(`)
i = {(t(i)k ,m

(i)
k ) : i = 1, 2, · · · , N (`)

i }, where N
(`)
i is a Poisson

random variable with a mean of κ(mi), and t
(i)
k is generated from the probability

density g(t− ti), and m
(i)
k is generated according the methods given in Section 4.

Step 4. Set G(`+1) = ∪i∈G(`)O
(`)
i .

Step 5. Remove all the events whose occurrence times after tend from G(`+1).
Step 6. If G(`+1) is not empty, let ` = `+1 and go to Step 3; else return ∪j=0`G

(`+1)

.

This has a number of advantages: it is computationally more efficient (and thus
quicker), as the sum over past events is only done within a single aftershock cas-
cade for each simulated event, not over the whole history as in the first method. It
also allows events to be labelled to indicate their position in the branching process,
in such a way that the ‘family tree’ information of background event and multi-
ple generations of aftershocks is preserved and available for analysis—information
that is not available in real earthquake catalogs (although it can be stochastically
reconstructed or estimated).

An R code implementation of this method is given in the accompanying software.
See Section 8 below for further detail on this code.

When simulating the temporal ETAS model, there are two kinds of boundary
problem: the temporal boundary and the magnitude boundary. The magnitude
boundary is caused by the neglecting of the triggering effect from the events smaller
than the magnitude threshold. It is not only a problem for simulation, but also for
parameter estimation and other statistical inference. Here we refer to Wang et al.
(2010) and Werner (2007) for details. The temporal boundary problem is: if we
simulate an ETAS model from a starting time and the observation history before
this starting time is empty, the whole process needs a certain time to come into
equilibrium. This problem could be partially solved by simulating a longer catalog
than required, and then neglecting the very early part of the simulated catalog.

Temporal models for earthquake occurrence are at the heart of statistical seismol-
ogy. In this section we have looked at how to simulate some of the main ones. One

http://www.corssa.org/articles/themev/zhuang_touati/zhuang_touati_sw
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further thing to be aware of is that for models with temporal interactions between
the events, such as SRM and ETAS model, starting a simulation without any event
history is an artificial temporal boundary condition, as any time window should
contain aftershocks of events occurrence before the start of the window. This is a
practical issue for simulation and is discussed more fully (with suggested solution)
in Section 8.

In the next two sections, we consider models that include some information on
the spatial dimensions of the earthquake process. Section 6 discusses models that
incorporate the spatial aspect in a relatively simple way, by assigning earthquakes
to one of a number of ‘regions’ and attempting to model interactions between these
regions. Section 7 looks at models that include a more complete description of the
spatial characteristics of the process, by assigning spatial coordinates to each event
and considering interactions at the level of the events themselves.

6 Simulation of multi-region models

Multi-region models such as the linked Stress Release Model partition the study
region, giving each part its own conditional intensity, and consider interactions be-
tween the sub-regions such as stress transfer from earthquakes. Suppose the observed
earthquakes are denoted by {(ti, Ri,mi) : i = 1, 2, · · · , N}, where Ri is an index for
the subregion where the ith event falls, taking values from 1 to Z, Z being the
total number of subregions, and N is the total number of events. The conditional
intensity of the linked Stress Release Model for the jth subregion is written as

λj(t) = aj exp

[
b t−

Z∑
k=1

cjk Sk(t)

]
, j = 1, Z (26)

where Z is the number of subregions, a and b are constants, cjk is a coupling term,
and Sk(t) is the stress released by earthquakes from subregion k, defined by

Sk(t) =
N∑
i=1

100.75mi I(Ri = k) I(ti < t), (27)

the logical function I(·) taking value 1 if the specified condition is true and 0 other-
wise. Equation (26) above is similar to equation (23) for the Stress Release Model,
but with the stress release term here being a sum over all other subregions. We refer
to Zhuang et al. (in preparation) for details of the linked Stress Release Model.

Another typical multi-region model is Hawkes’ mutally exciting process, which
adopts a conditional intensity of the form

λj(t) = µj +
Z∑
k=1

∑
i: ti<t

g
(k)
Ri

(t− ti). (28)
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Here we refer to the CORSSA article of Zhuang et al. (2014) for more details.
Both the linked Stress Release Model and the mutually and self-exciting Hawkes

process can be simulated using the following algorithm.

Algorithm 14 Simulate the linked Stress Release Model and Hawkes’ mutally ex-
citing process

Suppose that the observed earthquakes up to time t are {(ti, Ri) : i = 1, 2, · · · , N}.
Step 1. From t, generate next events in each subregion independently according to

the simulation of the Stress Release Model given in Section 5.3.
Step 2. Add the earliest event, say (tl, Rl), to the catalog.
Step 3. Set t = tl and go back to Step 1 until the terminating condition is reached

(for example, enough events are generated, or a preset ending time is reached).

7 Simulation of spatiotemporal models

We now look at models that incorporate a full spatial characterisation by assigning
more specific coordinates to events, beginning with the nonhomogeneous and non-
stationary spatiotemporal Poisson model and ending with the ETAS model. The
simulation of the nonhomogeneous Poisson model is often involved in simulation of
other spatiotemporal models. The spatiotemporal ETAS model is constructed from
temporal ETAS in such a way that the temporal branching structure remains un-
changed, and the assignment of locations to simulated events is done independently
by sampling from distributions that describe the locations of background events and
of aftershocks (in relation to the parent event).

7.1 Inhomogeneous Poisson model

Let us consider the most terrible case of a Poisson model with a intensity function
λ(t, x,m) on a region R, where x denotes a location in the 2D or 3D space. It can
be simulated by sequential conditioning by generating each component one by one,
but we can use the rejection method to simulate for the most general cases.

Algorithm 15 The thinning method applied to the nonhomogeneous Poisson model

Step 1. Choose a density function π(t, x,m), which is easier to simulate than
λ(t, x,M), such that Cπ(t, x,m) > λ(t, x,M) on a regular region R′ that en-
velopes the region of interest R, where C is a constant.

Step 2. Let Ω =
∫
M dm

∫
R′

dx
∫ tend

0
π(t, x,M)dt.

Step 3. Generate a Poisson random variate K with mean Ω.
Step 4. Generate K random vectors (ti, xi,Mi) by simulating the density function
π(t, x,m).



24

Step 5. Generate K random numbers, U1, U2, · · · , UK, uniformly distributed in
[0, 1].

Step 6. For each i, accept (ti, xi,Mi) if CUi < λ(ti, xi,Mi)/π(ti, xi,Mi); otherwise,
reject (ti, xi,Mi).

Step 7. Sort all the accepted (ti, xi,Mi) by ti into ascending order.

The choice of π(t, x,M), which is usually called the envelope function, is an es-
sential technique in using the rejection method. The most simple choice is to set
π(t, x,M) to a constant function. A slightly more complex choice is a density func-
tion with the time, the location and the magnitude to be independent of each other,
i.e., to set π(t, x,M) = πt(t)πx(x)πM(M), such that we generate each coordinate
independently.

The choice of the covering regionR′ usually is made in such a way that the integral
in Step 2 can be easily obtained. For example, in the 2D case, when πx,y(x, y) =
eax+by and R is a complex polygon, R′ could be chosen as a rectangle of the form of
[a1, a2]× [b1, b2] that covers R.

7.2 The space-time ETAS model

The space-time ETAS model has a conditional intensity in the form of

λ(t, x, y,m) = s(m)

[
µ(x, y) +

∑
i:ti<t

κ(mi) g(t− ti) f(x− xi, y − yi;mi)

]
, (29)

where s(m) is the magnitude probability density for all the events, µ(x, y) is the
background rate, κ(m) = Aeα(m−m0), m ≥ m0, is the expectation of the number of

direct offspring (productivity) from an event of magnitudem, g(t) = p−1
c

(
1 + t

c

)−p
, t >

0, is the p.d.f. of the length of the time interval between a direct offspring and its
parent, and f(x, y;m) is the p.d.f. of the relative locations between a parent of
magnitude m and its direct offspring.

The simulation of a space-time ETAS model can be done using the branching
algorithm as described in section 5.4 for temporal ETAS, adding the spatial compo-
nents in by simulating them independently, using the inversion method for example.
It requires a spatial background distribution for the initial background events, and
an aftershock kernel—a p.d.f. describing the placement of aftershocks around a par-
ent event. The algorithm is outlined as below.

Algorithm 16 Simulating the space-time ETAS model as a branching process (see,
e.g., Zhuang et al. 2004; Zhuang 2006, 2011)

Suppose that we have observations {(ti, xi, yi,mi) : i = 1, 2, · · · , K} up to time
tstart and we want to simulate the process forward into the time interval [tstart, tend]
in a spatial region R.
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Step 1. Generate the background catalog as a Poisson process with the background
intensity µ(t, x, y) in [tstart, tend] × R and magnitude of each event from s(m),
together with original observations {(ti, xi, yi,mi) : i = 1, 2, · · · , K} before tstart,
recorded as Generation 0, namely G(0).

Step 2. Set ` = 0.
Step 3. For each event i, namely (ti, xi, yi,mi), in the catalog G(`), simulate its

N
(`)
i offspring, namely, O

(`)
i = {(t(i)k , x

(i)
k , y

(i)
k ,m

(i)
k ) : i = 1, 2, · · · , N (`)

i }, where

N
(`)
i is a Poisson random variable with a mean of κ(mi), and t

(i)
k , (x

(i)
k , y

(i)
k ), and

m
(i)
k are generated from the probability densities g(t− ti), f(x, y;mi), and s(m),

respectively.

Step 4. Set G(`+1) = ∪i∈G(`)O
(`)
i .

Step 5. Remove all the events whose occurrence times after tend from G(`+1).
Step 6. If G(`+1) is not empty, let ` = ` + 1 and go to Step 3; else return all the

events from ∪`j=0G
(`+1) that are in R, i.e, return {(tι, xι, yι,mι) : (tι, xι, yι,mι) ∈

∪`j=0G
(`+1) and (xι, yι) ∈ R} .

An R code for simulating spatiotemporal ETAS in this way is given in the ac-
companying software, which uses a spatially uniform background over a circular or
rectangular target area.

As noted for the temporal ETAS model, there can be practical issues associated
with the boundary problem; in space-time ETAS, the spatial boundary is also im-
portant to consider. If no background events (or indeed aftershocks) are allowed
to occur outside the region of interest, the aftershocks that would have been gen-
erated by such events within the target region will be missing; thus there will be
an artificially lower density of events near the boundary, similar to the low level
of events in the temporal run-in period. This could be partially solved by starting
the simulation within a much bigger spatial window than the target one and then
trimming all the events falling out of the target region. The estimation of the extra
distance needed at the boundaries can be done in a similar way to that for the tem-
poral run-in period estimation: in equation (7), if F (R) is set to 0.95, this gives the
expected radius for the circle containing 95% of the aftershocks—a kind of spatial
equivalent of the effective sequence duration. The accompanying software uses twice
this distance as a ‘buffer.’ It is also possible to wrap sequences spatially (a periodic
boundary condition), as was explained in terms of temporal wrapping for temporal
ETAS.

Challenges arise when models include some coupling between components. There
is also the issue of sampling from a complicated region shape or spatial background
distribution. We explore these challenges now by looking at an inhomogeneous Pois-
son model that includes these features.

http://www.corssa.org/articles/themev/zhuang_touati/zhuang_touati_sw
http://www.corssa.org/articles/themev/zhuang_touati/zhuang_touati_sw
http://www.corssa.org/articles/themev/zhuang_touati/zhuang_touati_sw
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Again, for models with temporal interactions between the events, starting a sim-
ulation without any event history is an artificial temporal boundary condition that
should usually be avoided. For models with spatial interactions between events,
there is a similar issue of applying spatial boundaries in a realistic way. Please see
section 8 below for a discussion of this.

8 Practical issues: Boundary problems

Of course, there are many issues while carrying out simulations of seismicity models
in practice. The most frequent issue is the boundary problem. Boundary problems
are of three types: (a) temporal boundaries, (b) spatial boundaries, and (c) magni-
tude boundaries.

Magnitude boundaries were touched upon in section 4, where it was noted that
a lower magnitude bound is needed for most p.d.f.s describing magnitude (such as
the exponential Gutenberg–Richter one), and in some cases an upper bound (sharp
or tapered) is also needed to prevent unphysically large events being simulated.
In this section we briefly discuss the importance of handling temporal and spatial
boundaries carefully in simulations.

Hard temporal boundaries can lead to artifacts in simulations of models which
have some interation between events (and thus some time-dependence), such as
SRM or ETAS. Using the simulation of temporal ETAS model as an example, if
there is no ‘history’ before the start of the simulation, that is, past events from
which aftershocks can be triggered within the target time window of the simulation,
the event rate will start off artificially low and can take some time to reach a
stationary state. Initially, the conditional intensity takes the value of µ; it then
gradually increases as more events are added to the catalog and contribute through
the triggering term. Assuming the branching ratio is less than 1, the event rate will
reach a finite long-term average value. The ratio of spontaneous to triggered events
in the catalog also converges towards its long-term value as the simulation progresses
and more aftershocks are added. Figure 1 shows an example of the effect of this on
a simulation: note the low number of events near the beginning. Usually we are only
interested in a simulation that is representative of the long-term stationary state,
and so basing an analysis on a simulation that contains this non-stationary run-in
period can be misleading.

One solution to this issue is to allow for the run-in period and remove this from
the final result. The period to be removed could be, for example, the average time
required for 95% of aftershocks—direct and indirect—to have occurred following a
given parent event: this is T ≈ c(1− k)−

1
θ , where c is one of the Omori parameters,

as is p = 1 + θ, and k is the fraction of aftershocks to have occurred (e.g. 0.95).

(This can be derived from
∫ T

0
g(v) dv = k, where g(t) is defined in Equation (25).)

http://www.corssa.org/glossary/#artifact


27

0 20 40 60 80 100

0.
0

1.
0

2.
0

3.
0

Time (days)

M
ag

ni
tu

de

(a)

0 20 40 60 80 100

20
00

00
80

00
00

14
00

00
0

Time (days)

E
ve

nt
 r

at
e 

(p
er

 d
ay

)

(b)

Fig. 1 A simulation of the ETAS model from time 0 to 100 days, without any history prior to time 0. Plot (a) shows
the events; (b) shows the average event rate (per day) in a five-day moving window throughout the simulation. (The

background rate used was µ = 1 event per day, and the aftershocks governed by a branching ratio of n = 0.96.)

However be aware that this can sometimes be quite large. The problem is especially
acute for simulations with high µ, as the high temporal density of events in such a
case might mean that the computational time per unit of simulation time is very
large.

Another option is to simulate each Omori sequence for a fixed duration (such
as the duration for 95% of the aftershocks to have occurred, as above), even if
they overshoot the end of the catalog, and then wrap aftershocks occurring after
the end time back to the start (as many times as necessary). These aftershocks
will now be considered to be offspring of events occurring before the start of the
simulation. This removes the need to discard a run-in period; however, in order to
avoid excessive wrapping, the simulated catalog still needs to be of a reasonable
length (and truncated at the end if necessary). This is the technique used in the
accompanying software.

For some particular types of temporal Hawkes models, a theoretical solution,
which is called “perfect simulation,” was found by Møller and Rasmussen (2005).

http://www.corssa.org/articles/themev/zhuang_touati/zhuang_touati_sw
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For spatial models with interactions between events, there is a spatial boundary
problem of a similar nature: if no background events (or indeed aftershocks) are
allowed to occur outside the region of interest, the aftershocks that would have been
generated by such events within the target region will be missing; thus there will
be an artificially lower density of events near the boundary. This could perhaps be
mitigated by starting the simulation within a much bigger spatial window than the
target one, and then at the end, trimming all the events falling out of the target
region. The estimation of the extra distance needed at the boundaries can be done
in a similar way to that for the temporal run-in period estimation: in equation (7),
if F (R) is set to 0.95, this gives the expected radius for the circle containing 95%
of the aftershocks—a kind of spatial equivalent of the effective sequence duration.
The accompanying software uses twice this distance as a ‘buffer.’ It is also possible
to wrap sequences spatially (a periodic boundary condition), as described above in
terms of temporal wrapping.

9 Usages of simulations

9.1 Visualizing models

As mentioned in section 1, one of the usages of simulation is visualizing the model.
Once a statistical model is formulated, one can use explorative data analysis tech-
niques (such as those introduced in Theme III of CORSSA) to have a visual im-
pression of how the characteristics of the simulated catalog change with the model
parameters.

The following example is taken from Harte and Vere-Jones (2005). Consider a
renewal model with a gamma p.d.f. of waiting times:

f(τ, κ, θ) = τκ−1 e−τ/θ

θκ Γ (κ)
, (30)

where κ is the shape parameter, θ is the scale parameter, and Γ (·) represents Euler’s
gamma function defined by Γ (x) =

∫∞
0
vx−1e−vdv. It is obvious that we can always

choose a proper time unit for τ such that θ = 1. Figure 2 gives the simulation results
for different κ: We can see that, when κ < 1, the process is clustered; when κ > 1,
the process becomes more regularly spaced; when κ = 1, the process is neither
clustered nor regularly spaced, but corresponds to the case of complete randomness,
i.e., the Poisson process.

http://www.corssa.org/articles/themev/zhuang_touati/zhuang_touati_sw
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Fig. 2 Cumulative frequencies of occurrences in simulations of the gamma renewal process for (a) κ = 0.04, (b)
κ = 0.2, (c) κ = 1, (d) κ = 10, and (e) κ = 100. The average occurrence is set 1 by adjusting the value of θ. The
vertical bars represent the occurrence times of each event.
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9.2 Probability earthquake forecasting

Suppose we are given the observation of earthquakes and precursors to a time t, and
try to predict the occurrence of at least one event in a given time interval [t, t+ dt]
within a particular space-time window with a formulated model (Vere-Jones 1998).
Then time T ∗ to the next event from the time t is

Pr{T ∗ > τ} = exp

[
−
∫ τ

0

λ(t+ v)dv

]
. (31)

Algorithm 17 Forecasting based on simulations

Step 1. Fit the model to the observation data up to the given time t to get the model
parameters by using, e.g., maximum likelihood estimation.

Step 2. Simulate a time τ to the next occurring event by using the λ(t), or simulate
the time to the next occurring event and its location and magnitude by using
the λ(t, x,M) if the conditional intensity has a space-time-magnitude form. The
simulation method generally depends on the form of the conditional intensity
function.

Step 3. Add the new events to the history, and return to step (2), replacing t by
t+ τ .

Step 4. Continue until the end of the time interval for forecasting.
Step 5. Repeat the above simulation in Steps (2) to (5) many times; the propor-

tion containing at least one event in the target prediction space-time-magnitude
window can be determined and used as an estimate of the required forecast prob-
ability.

There are many references on forecasting seismicity using simulations, for exam-
ple, Vere-Jones (1998), Helmstetter et al. (2006) and Zhuang (2011).

10 Software

Most simple processes can be simulated with several lines of R or Matlab commands.
R codes for the simulation of complex models, such as the Stress Release Model and
its multi-region version, can be found in SSLIB. Alternative codes for simulating
temporal and spatio-temporal ETAS are given in the accompanying software. R is a
free statistical computing language developed by R Development Core Team (2012).

The SASeis-2006 also provides the implementation of the simulation of the tem-
poral ETAS model and Hawkes’ models in Fortran.

http://www.corssa.org/glossary/#maximum_likelihood
http://cran.r-project.org/web/packages/PtProcess/
http://www.corssa.org/articles/themev/zhuang_touati/zhuang_touati_sw
http://www.ism.ac.jp/~ogata/Ssg/softwares.html
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Appendix A Proof of the inversion method

If the inversion algorithm in section 2.1 is correct, then F−1(U) has the cumulative
distribution F (x), as required of the variable we want to sample. Thus we need to
show that

Pr{F−1(U) 6 x} = F (x) (32)

The left-hand side is equivalent to Pr{U 6 F (x)}, since F (·) is a monotonically
increasing function and can therefore be applied to both sides of the inequality
without changing the probability. Also, U = F (X) belongs to a uniform distribution,
implying

Pr{U 6 F (x)} = F (x), (33)

as required.

Appendix B Proof of the rejection method

The random variate X generated by the rejection algorithm in section 2.2 has a
density f(·) since

Pr{Y is accepted} =

∫
Pr{Y ∈ (x, x+ dx) and Y is accepted}

=

∫
Pr{Y is accepted | Y ∈ (x, x+ dx)}Pr{Y ∈ (x, x+ dx)}

=

∫
f(x)

B g(x)
g(x) dx =

1

B
(34)

and so

Pr{Y ∈ (x, x+ dx) | Y is accepted} =
Pr{Y ∈ (x, x+ dx) and Y is accepted}

Pr{Y is accepted}

=
g(x) dx× f(x)

B g(x)

1
B

= f(x) dx. (35)

This last statement says that the probability that an accepted Y value is in the
range [x, x+ dx] is equal to f(x) dx. In other words, f(x) is the distribution of the
accepted Y values.
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Appendix C Proof of the thinning method

To prove that the events generated and accepted by the thinning algorithm in section
3.2 form a point process with conditional intensity λ(t), we need only prove that,
from time t, the survival function of the waiting time τ to the next accepted event
is

St(τ) = Pr{From time t, no event is accepted before time t+ τ} = exp

[
−
∫ t+τ

t

λ(v)dv

]
.

The envelope process is a Poisson process with rate B, and so the number of events
simulated in the envelope process within [t, t + τ ] is a Poisson random variate K
with a mean of Bτ :

Pr{K = k} =
[Bτ ]k

k!
e−Bτ , k = 0, 1, 2, · · · .

When no event from the target process occurs in [t, t + τ ], all of these K events in
the envelope process are rejected. For each of these K events, the probability that
it is rejected can be evaluated by

Pr{An envelope-process event in [t, t+ τ ] is rejected}

=

∫ t+τ

t

Pr{This envelope-process event occurs within [v, v + dv], and it is rejected} dv

=

∫ t+τ

t

1

τ

[
1− λ(v)

B

]
dv = 1− 1

Bτ

∫ t+τ

t

λ(v) dv

In the above equation, 1
τ

is the probability density for the location (in time) of
any event in the envelope process, given that it does occur within [t, t + τ ], and
1− λ(v)/B is the probability that an event from the envelope process at location v
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is rejected. Thus,

St(τ) = Pr{From time t, no event is accepted before time t+ τ}

=
∞∑
k=0

Pr

{
there are k events from the envelope process
falling in [t, t+ τ ], and all of them are rejected

}

=
∞∑
k=0

Pr {K = k} × Pr

{
An envelope-process event occurs
within [t, t+ τ ], and it is rejected

}k
=
∞∑
k=0

[Bτ ]k

k!
e−Bτ

[
1− 1

Bτ

∫ t+τ

t

λ(v) dv

]k

= e−Bτ
∞∑
k=0

[
Bτ −

∫ t+τ
t

λ(v) dv
]k

k!

= exp

[
−
∫ t+τ

t

λ(v) dv

]
In the last step, the power series expansion of the exponential function, ex =∑∞

n=0
xn

n!
, is used.
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